Смекни!
smekni.com

Моделирование ситуаций и выработка управленческих решений (стр. 7 из 10)

Если бы органу управления удалось точно установить значение параметра среды Z** = Zj , то матрица решений сузилась бы до одного столбца, и задача оптимизации решения заключала в выборе из элементов этого столбца такой клетки, в которой значение показателя Wij** экстремальное. Этим было бы выбрано значение i = i**, т. е. предложена наивыгоднейшая комбинация параметров решения или, что то же самое, предложено лучшее решение данной математической задачи. Однако мы не всегда можно знать точно значение параметра среды. В связи с этим следует проводить оптимизацию не только по параметру решения, но и по параметру среды.

Формальная оптимизация заканчивается выработкой количественных оснований для принятия решений по результатам анализа конкретной математической модели.

Формирование решения. На последнем этапе процесса принятия решения – этапе формирования решения – производится сопоставление значения эффективности оптимальной стратегии с требующимся уровнем эффективности. Если результаты сопоставления окажутся удовлетворительными, то тогда эта стратегия подвергается соответствующим модификациям с целью учета неподдающихся формализации факторов (психологических, моральных, экономических т. п.), а также допущенных при формализации ограничений. Такая модифицированная формализованная стратегия и будет решением.

Если же результаты сопоставления окажутся неудовлетворительными, то производится так называемая внутренняя корректировка решения, т. е. возвращение к одному из описанных выше этапов с целью выявления возможности доопределения решения.

Поскольку любая формальная модель не учитывает ряда факторов в силу абстракций и допущений, а также вследствие неумения (а иногда и отсутствия целесообразности) формализовать ряд вопросов, связанных с психологическими, правовыми и другими моментами, окончательное решение – выработку командной информации в процессе управления – производит человек. При этом он, учитывая результат формальной оптимизации, стремится учесть и ряд других факторов.

Поскольку объектом управления является коллектив людей, деятельность их совершается в большой степени по законам психологии. Целевая функция социально-психологических методов состоит в том, чтобы, воздействуя определенным образом на работника, создать ситуацию, ориентирующую его на максимальную реализацию своих потенциальных способностей при выполнении поставленных задач.

Поэтому, принимая решение, следует учитывать следующие моменты психологического характера:

– социально-психологический уровень развития коллектива;

– способность коллектива к восприятию предстоящих целей и задач;

– индивидуальные качества исполнителей;

– желание людей выполнять задачи;

– степень самоорганизации коллектива;

– административно-правовое положение руководителя;

– личные качества работника, принимающего решения.

В силу творческого субъективного характера акта принятия решения невозможно установить какие-нибудь строгие единые правила. Основную роль здесь играет практический опыт, способность к предвидению хода событий. Вместе с тем следует учитывать возможность использования дополнительных (по сравнению с принятыми в формальной модели) показателей эффективности, а также дополнительную оценку качества информации состояния и всех допущений, принятых в формальной модели.

Процесс принятия решения завершается реализацией решения, анализом полученных результатов и корректировкой решения.


4. Примеры применения количественных методов выработки решений

Станковая задача

Современные методы управления тесно связаны с количественными обоснованиями принимаемых решений, с широким использованием экономико-математических методов и моделей управления производством.

Представим себе, например, группу из трех станков, каждый из которых может производить два типа деталей, назовем их условно деталями А и Б. Производительность каждого из станков по разным типам деталей, как правило, различна:

станок № 1 производит в одну минуту 5 деталей А или 5 деталей Б,

станок № 2 производит в одну минуту 6 деталей А или 2 детали Б,

станок № 3 производит в одну минуту 5 деталей А или 3 детали Б.

Задача осложняется тем, что требуется выполнить два важных условия или, как говорят в математике, учесть два ограничения:

– ни один из станков не должен простаивать;

– продукция должна быть комплектна, т. е. количество произведенных деталей А должно равняться количеству деталей Б (это, например, могут быть гайки и болты).

Несмотря на кажущуюся простоту задачи, ни одним из существовавших ранее методов она не решалась. Попробуем и мы, опуская некоторые несущественные подробности, решить столь поучительную задачу. Прежде всего, попытаемся, как, наверное, сделали и те, кто впервые столкнулся с этой задачей, получить ее глазомерное решение.

Все расчеты будем производить исходя из общей продолжительности времени работы в 6 часов = 360 минут (одна смена). Попробуем на все это время загрузить станок № 1 деталями А. Станки № 2 и № 3 также загрузим на все время работы, но деталями Б. Результат такого глазомерного решения изобразим следующим образом: слева от вертикальной черты покажем время загрузки станков по различным деталям, а справа – соответствующее количество произведенной продукции (произведение времени работы на минутную производительность).

Итак, глазомерное решение см. в табл. 2.

Таблица 2
Станок Продолжительность работы станка, мин Производительность станка (количество деталей за время работы)
А Б А Б
№1 360 0 1800 0
№2 0 360 0 720
№3 0 360 0 1080
Общее количество 1800 + 1800 = выпущенной продукции = 3600 деталей

Глазомерное решение полностью отвечает поставленным условиям: во-первых, все станки полностью загружены в течение рабочего времени; во-вторых, количество произведенных деталей А равно количеству деталей Б. Остается, однако, открытым главный вопрос планирования: является ли наше глазомерное решение наилучшим в данных условиях? Нельзя ли составить другой план распределения станков, который отличался бы от глазомерного наибольшей производительностью?

Обоснованием такого оптимального решения занимается математическое программирование. Суть метода удобнее всего выразить с помощью наглядного геометрического представления, графика (рис. 3). Здесь показан построенный по правилам математического программирования многоугольник OABCD (он заштрихован). Многоугольник соответствует условиям нашей задачи и представляет собой область допустимых планов распределения времени работы станков № 2 и № 3 над деталью А. По соответствующим осям графика отмечена продолжительность работы этих станков. (В своих расчетах мы вполне можем обойтись двумя станками и одной деталью, так как по этим данным нетрудно рассчитать и все остальные.)

Рис. 3. График решения станковой задачи

Любая точка заштрихованной области допустимых планов, как видно из ее названия, даст нам какой-либо один возможный план, отвечающий обоим принятым условиям – ограничениям. Так, например, точка О соответствует нашему глазомерному плану: время работы над деталью А на станках № 2 и № 3 равно нулю.

В поисках наилучшего плана посмотрим, какой план распределения станков дает другие точки области. Вот, скажем, точка В. Как видно из графика, этой точке соответствует время работы над деталью А станка № 2, равное 90 минутам, станка № 3 – 360 минутам. По этим данным нетрудно составить второй план распределения станков, причем время, отводимое на производство детали Б станками № 2 и № 3, получится как дополнение до 360 минут времени, снятого с графика,– станки не должны простаивать. Что касается станка № 1, то его время работы подбирается таким, чтобы общее количество деталей А и Б совпадало.

Второе решение, следовательно, будет выглядеть так (табл. 3).


Таблица 3
Станок Продолжительность работы станка, мин Производительность станка (количество деталей за время работы)
А Б А Б
№1 0 360 0 1800
№2 90 270 540 540
№3 360 0 1800 0
Общее количество 2340 + 2340 = выпущенной продукции = 4680 деталей

Вот так результат! Мы сразу же, можно сказать бесплатно, на том же оборудовании увеличили производительность на 1080 деталей, т. е. на целых 30 %.

Нас, однако, продолжает мучить законный вопрос – добились ли мы уже самого лучшего, оптимального решения, или нет? Стоит ли дальше пытаться улучшить план?

В теории математического программирования убедительно показывается, что оптимальному решению соответствует одна из вершин многоугольника допустимых планов, а именно та, для которой общая производительность окажется максимальной. В нашем случае это вершина С.

Действительно, рассчитывая известным уже нам путем план распределения станков для этой точки, получим следующее решение (табл. 4).

Таблица 4
Станок Продолжительность работы станка, мин Производительность станка (количество деталей за время работы)
А Б А Б
№1 0 360 0 1800
№2 360 0 2160 0
№3 90 270 450 810
Общее количество 2610 + 2610 = выпущенной = 5220 деталей продукции

Мы получили план почти наполовину (на 45 %) лучше, чем глазомерный. И этот существенный прирост, подобно и предыдущему улучшению, ничего (если не считать умственных усилий на планирование) не стоит. Никакого дополнительного расхода каких-либо ресурсов не потребовалось. Те же станки, те же детали, те же станочники работают то же время. Не меняются и производительности станков. Эффект здесь чисто интеллектуальный, «умственный», – за счет рационального распределения ресурсов оборудования (кстати, латинское слово «рационалист» означает «разумный»). Умное, обоснованное решение сделало чудо, в которое даже трудно поверить. Подобный «чудесный» результат, как мы уже понимаем, характерен для всех решений, принимаемых с помощью научных методов.