• объем и удельный вес производства отдельных видов прогрессивных, высокоэффективных изделий в общем выпуске продукции данной группы;
• экономический эффект от использования продукции повышенного качества;
• показатели сортности для продукции ряда отраслей промышленности.
Обобщающие показатели качества используются в планах предприятий, научно-исследовательских и проектно-конструкторских организаций. По уровню этих показателей можно судить о качестве выпускаемой продукции в целом на предприятии или отрасли.
В комплексной системе управления качеством продукции статистические методы контроля относятся к наиболее прогрессивным. Они основаны на применении методов математической статистики к систематическому контролю за качеством изделий и состоянием технологического процесса с целью поддержания его устойчивости и обеспечения заданного уровня качества выпускаемой продукции.
Статистические методы контроля производства и качества продукции имеют ряд преимуществ перед другими методами:
1) являются профилактическими;
2) позволяют во многих случаях обоснованно перейти к выборочному контролю и тем самым снизить трудоемкость контрольных операций;
3) создают условия для наглядного изображения динамики изменения качества продукции и настроенности процесса производства, что позволяет своевременно принимать меры к предупреждению брака не только контролерам, но и работникам цеха — рабочим, бригадирам, технологам, наладчикам, мастерам.
Статистические методы управления качеством продукции предполагают:
1) анализ технологического процесса с целью приведения его к требуемой настроенности, точности и статистически устойчивому состоянию;
2) текущий контроль с целью регулирования и поддержания процесса в состоянии, обеспечивающем заданные качественные параметры;
3) выборочный статистический приемочный контроль качества готовой продукции.
Многие из современных статистических методов довольно сложны для восприятия, а тем более для широкого применения всеми участниками процесса. Японские ученые отобрали из всего множества семь методов. Их заслуга, и в первую очередь, профессора Исикавы, состоит в том, что они обеспечили простоту, наглядность, визуализацию этих методов, превратив их фактически в эффективные инструменты контроля качества (рис. 1). Их можно понять и эффективно использовать без специальной математической подготовки.
Рис. 1. Семь инструментов контроля качества
При всей своей простоте эти методы позволяют сохранить связь со статистикой и дают возможность профессионалам пользоваться результатами этих методов и при необходимости совершенствовать их. Как видно из рис. 1, к семи инструментам контроля качества относятся следующие статистические методы:
контрольный листок, гистограмма, диаграмма разброса,
диаграмма Парето, стратификация (расслоение),
диаграмма Исикавы (причинно-следственная диаграмма), контрольная карта.
Эти методы можно рассматривать и как отдельные инструменты, и как систему методов (разную в различных обстоятельствах).
Последовательность применения семи методов может быть различной в зависимости от цели, которая поставлена перед системой. Точно также применяемая система не обязательно должна включать все семь методов Их может быть меньше, а может быть и больше, ибо существуют и другие статистические методы, например, методы оценки качества. Однако можно с полной уверенностью сказать, что семь инструментов контроля качества являются необходимыми и достаточными статистическими методами, применение которых, по мнению Исикавы, помогает решить 95% всех проблем, возникающих на производстве.
Внедрение семи инструментов контроля качества должно начинаться с обучения этим методам всех участников процесса. Успешному внедрению семи инструментов контроля качества в Японии способствовало отношение руководителей компании к процессу обучения. Они ставили и продолжают ставить перед собой цель сделать каждого рабочего инженером, а инженеров, не знакомых со статистическими методами, не считать полноценными специалистами. Большую роль в обучении статистическим методам в Японии сыграли кружки контроля качества, в которых прошли обучение рабочие и инженеры большинства японских компаний.
Обучаются не только инженеры и рабочие, но и бизнесмены. По высказыванию Деминга, "японский бизнесмен никогда не считает себя слишком старым, чтобы учиться или быть невосприимчивым к знаниям".
Статистическое мышление необходимо для каждого участника процесса, а для этого необходимо знать статистические методы, которые за счет своей простоты, достигнутой в семи инструментах контроля качества, доступны для всех. Каждый служащий компании или организации, используя статистические методы для анализа и контроля процессов, тем самым способствует повышению качества, эффективности производства и снижению затрат.
Говоря о семи простых статистических методах контроля качества, следует подчеркнуть, что это инструменты познания, а не инструменты управления.
Статистические методы контроля качества в настоящее время применяются не только в производстве, но и в планировании, проектировании, маркетинге, материально-техническом снабжении и т.д.
В управлении качеством статистический контроль должен дополняться применением знаний естественных законов не только для понимания объектов исследования, но и для выработки мероприятий по повышению качества. Таким образом, статистические методы контроля имеют обширный фронт применения.
Применение статистических методов — весьма действенный путь разработки новых технологий и контроля качества процессов. Многие ведущие фирмы стремятся к их активному использованию, а некоторые из них тратят более ста часов ежегодно на обучение этим методам своих сотрудников, осуществляемое в рамках самой фирмы. Хотя знание статистических методов — часть нормального образования инженера, само знание еще не означает умения применить его. Способность рассматривать события с точки зрения статистики важнее, чем знание самих методов.
Для наглядного представления тенденции изменения наблюдаемых значений применяют графическое изображение статистического материала. Наиболее распространенными графиками, к которым прибегают при анализе распределения случайной величины, являются полигон, гистограмма и кумулятивная кривая. Однако когда говорят о втором инструменте контроля качества, то упоминают только гистограмму, как наиболее часто применяемое на практике графическое изображение распределения.
Гистограмма — это инструмент, позволяющий зрительно оценить закон распределения статистических данных.
Рассмотрим все три упомянутых графических представления данных, с тем чтобы читатель смог оценить достоинства каждого из них и при необходимости применить на практике.
Полигоны, как правило, применяют для отображения дискретных изменений значений случайной величины, но они могут использоваться и при непрерывных (интервальных) изменениях. В этом случае ординаты, пропорциональные частотам интервалов, восстанавливаются перпендикулярно оси абсцисс в точках, соответствующих серединам данных интервалов. Вершины ординат соединяются прямыми линиями. Для замыкания кривой крайние ординаты соединяются с близлежащей серединой интервала, в которой частота равна нулю.
Для выяснения того, соответствует ли данное распределение результатов измерения нормальному распределению, иногда используют специальную вероятностную бумагу, называемую нормальной вероятностной бумагой. Представление данных на такой бумаге осуществляется следующим способом.
На основе полученных в результате измерения параметров качества значений абсолютных частот
В результате имеют на ней шесть точек: три точки, соответствующие большему значению параметра качества относительно его среднего значения, и три точки, соответствующие меньшему его значению (рис. 2). Если точки хорошо ложатся на прямую, то можно говорить о соответствии статистических данных нормальному распределению.
В данном примере точки не легли точно на прямую, но оказались довольно близко к ней. Поэтому можно сделать вывод о том, что результаты измерения имеют распределение, близкое к нормальному. Хотя распределение данных и близко к нормальному, точки на рис. 2 в начале и в конце заметно отклоняются от прямой, что, в общем-то бывает часто.