Смекни!
smekni.com

Группировка статистических данных и ее роль в анализе информации (стр. 1 из 5)

Содержание

Семестр 1_ 2

Группировка статистических данных и ее роль в анализе информации_ 2

Абсолютные, относительные, средние величины_ 2

Относительные величины_ 2

Средние величины_ 2

Статистические распределения и их характеристики_ 3

Показатели вариации (колеблемости) признака_ 4

Сложение дисперсий_ 4

Показатель асимметрии_ 5

Показатель эксцесса (островершинности) 5

Кривые распределения 5

Выборочное наблюдение 6

Формулы ошибок простой случайной выборки_ 7

Формулы для определения численности простой и случайной выборки_ 7

Типичная выборка_ 7

Серийная выборка_ 8

Малые выборки_ 8

Корреляционная связь_ 8

Уравнение регрессии_ 9

Ряды динамики_ 10

Показатели динамики_ 10

Средние показатели динамики_ 10

Тренды_ 11

Семестр 2 (Индексы) 11

Семестр 1

Группировка статистических данных и ее роль в анализе информации

Равный интервал, величина интервала -

, m – число групп

Формула Стерджесса (величина интервала) -

, n – число наблюдений

Абсолютные, относительные, средние величины

Относительные величины

Относительные величины (ОВ) динамики характеризуют изменение явления во времени. (Коэффициент роста)

Темп роста – с переменной базой -

yn – уровень явления за период (например, выпуск продукции по кварталам года)

С постоянной базой -

, yk – постоянная база сравнения

ОВ планового задания -

ОВ выполнения плана -

ОВ динамики -

ОВ структуры характеризуют долю отдельных частей в общем объеме совокупности (удельный вес) -

ОВ координации отражают отношение численности двух частей единого целого, т. е. показывают, сколько единиц одной группы приходится в среднем на одну, на 10 или на 100 единиц другой изучаемой совокупности.

ОВ координации -

ОВ наглядности (сравнения) отражают результаты сопоставления одноименных показателей, относящихся к одному и тому же периоду времени, но к разным объектам или территориям (например, сравнивается годовая производительность труда по 2-м предприятиям)

ОВ сравнения -

Средние величины

Степенные средние общего типового расчета:

Средняя степенная простая -

,
- индивидуальное значение признака, по которому рассчитывается средняя,
n – объем совокупности (число единиц)

Средняя степенная взвешенная -

, fi – частота повторения индивидуального признака (
=n)

Значе-ние k

Наименование средней

Формула средней

Простая

Средняя

-1

Гармоническая

,

0

Геометрическая

1

Арифметическая

,

2

Квадратическая

гарм. <
геом <
арифм <
квадрат, x=w/f

Гармоническая простая – когда небольшая совокупность и индивидуальные значения не повторяются. Используется, если исчисляем среднюю из обратных величин.

Средняя квадратическая – для расчета среднего квадратического отклонения, являющегося показателем вариации признаков

Средняя геометрическая простая – для вычисления среднего коэффициента роста (темпа) в рядах динамики, если промежутки, к которым относятся коэффициенты роста, одинаковы.

Статистические распределения и их характеристики

Мода – значение признака, которое наиболее часто встречается в совокупности

,
- нижняя граница модального интервала (интервал с наибольшей частотой),
- величина интервала,
- частота в модальном интервале.

Медиана – значение признака, которое лежит в середине ранжированного ряда и делит этот ряд на две равные по численности части.

- положение медианы

,
- нижняя граница медианного интервала,
- накопленная частота интервала, предшествующего медианному,
- частота медианного интервала.

Квартель

,

,

Дециль

,
(от 1/10 до 9/10)

Показатели вариации (колеблемости) признака

Среднее линейное отклонение – на сколько в среднем отличаются индивидуальные значения признака от среднего его значения.

-для несгруппированных данных (первичного ряда):

-для вариационного ряда:

Среднее квадратическое отклонение

- для несгруппированных данных:

- для вариационного ряда:

Дисперсия

- для несгруппированных данных:

- для вариационного ряда:

Коэффициент вариации (используется для характеристики однородности совокупности по исследуемому признаку)

- до 17% – совокупность совершенно однородна, 17%-33% - достаточно однородна, >33% - неоднородна.

Сложение дисперсий

Величина общей дисперсии (

) характеризует вариацию признака под влиянием всех факторов, формирующих уровень признака у единиц данной совокупности