Вступ________________________________________________________________________ 1
1. Системи та закономірності їх функціонування_____________________ 2
1.1. Кібернетика та біологія_____________________________________________________ 2
1.2. Поняття системи__________________________________________________________ 15
1.2.1. Визначення системи_______________________________________________________ 15
1.2.2. Основні характеристики системи___________________________________________ 15
1.2.3. Елемент як системне поняття_______________________________________________ 17
1.2.4. Цілеспрямованість системного елемента_____________________________________ 18
1.2.5. Цілісність системного елемента_____________________________________________ 18
1.2.6. математичне моделювання системних елементів______________________________ 19
1.2.7. Компоненти та підсистеми_________________________________________________ 22
1.2.8. Відношення та зв’язки_____________________________________________________ 22
1.2.9. Зворотні зв’язки___________________________________________________________ 23
1.3. Структури та їх представлення______________________________________________ 26
Література_________________________________________________________________ 26
У сучасних наукових дослідженнях питома вага біологічних робіт складає одну третину, тобто більше за одну третину наукових працівників світу зайнято аналізом біологічних систем і рішенням прикладних задач біології і медицини. Такий розподіл наукових досліджень пояснюється складністю біологічних систем, біологічних і медичних задач, а також життєвою необхідністю рішення цих задач для людства. Останнім часом результати біологічних досліджень все частіше стають основою для рішення задач в традиційно технічних наукових напрямах: автоматизації, розвитку обчислювальної техніки, конструюванні інтелектуальних роботів.
Рішення цих задач передбачає інтегрування експериментальних і теоретичних досліджень біологічних і медичних систем і все більш широке впровадження в практику цих досліджень математичних методів. Математика є універсальною мовою для опису будь-якого процесу або явища. Внаслідок своєї абстрактності одні й ті ж математичні методи виявляються придатними для вивчення процесів, що мають різну фізико-хімічну природу.
Було б помилкою вважати, що математика тільки в останні п'ятнадцять двадцять років стала використовуватися для опису роботи біологічних систем: вона застосовувалася вже на ранніх етапах дослідження живих організмів (досить згадати математичне дослідження Л. Ейлера системи кровообігу, проведене ще в XVIII в.).
Застосування тих або інших математичних методів для аналізу біологічних систем залежить від експериментальних даних, що має в своєму розпорядженні дослідник, і від задач, які він перед собою ставить. Це, в свою чергу, пов'язано з рівнем знань, досягнутим при вивченні біосистеми, з можливостями і засобами експериментального вивчення біосистеми, зі знанням математики і засобів математичного рішення задач. Математичний опис біологічних систем і процесів удосконалюється по мірі підвищення рівня знань в біології. Процес цей непростий, математичний опис може ускладнюватися на певних етапах дослідження, а потім спрощуватися.
На ранніх етапах застосування математичних методів до опису біологічних систем будь-яка математична формула внаслідок лаконічності набувала значущість біологічного закону. У цей час положення в області застосування математичних методів до аналізу біосистеми змінилося. Дослідники при побудові математичного опису якої-небудь конкретної біосистеми починають усвідомлювати, що вони не охоплюють всієї сукупності властивостей біосистеми і зовнішніх умов. Тому тепер кажуть не про математичні закони, а про математичні моделі біосистеми. Дослідник всякий раз вказує на ті властивості біосистеми, які він відображає в математичній моделі, і вказує те коло задач, для рішення яких призначається модель. Ця обставина пов'язана з поглибленням наших знань про функціонування біосистеми, із збільшенням можливостей експериментального вивчення їх і більш детальними задачами, які ставляться при експериментальному дослідженні.
Прогрес в біології донедавна був пов'язаний в основному із застосуванням методів хімії і фізики при аналізі біосистеми, але основна ідея даного посібника пов’язана з обгрунтуванням можливості використання в біології принципів і законів, характерних для фізичних систем.
Сама поява кібернетики зобов'язана поглибленню досліджень технічних і біологічних систем з точки зору загальних процесів управління, процесів перетворення інформації, вивчення складності і організації. Становлення кібернетики як науки пов'язане з іменами багатьох радянських вчених, серед яких особливе місце займає А. Н. Колмогоров. Розвиток кібернетики в СРСР з виділенням різних прикладних напрямів зобов'язаний зусиллям А. І. Берга, В. М. Глушкова, Н. М. Амосова, А. А. Ляпунова, П. К. Анохіна, В. В. Паріна.
В 30-ті роки 20-го сторіччя філософія стала джерелом появи узагальнюючого напрямку – теорія систем. Основоположником даної теорії вважається Л. фон Берталанфі, біолог, який зробив перший доклад щодо нової концепції на філософському семінарі, користуючись в якості базових понять термінологію філософії.
В 60-ті роки при постановці та дослідженні складних проблем проектування та керування поширився термін “системотехніка”, вперше запропонований Ф.Є.Тємниковим в 1962р як еквівалент перекладу з англійської “system engineering”. Пізніше цей термін почав використовуватися в основному в технічних напрямках теорії систем.
В 1965р. І.Б.Новіковим був запропонований термін системологія, який набув широкого ужитку в роботах В.Т.Кулика та Б.С.Флейшмана.
Щодо задач керування в певний період набув поширення термін кібернетика, запропонований М.А.Ампером, та взятий Н.Вінером для позначення нової “науки про керування в живих організмах та машинах”.
Найбільш конструктивним із напрямків досліджень на сучасному етапі вважається системний аналіз, котрий вперше з’явився в роботах корпорації RAND у зв’язку з задачами військового керування в 1948р.
Метою даного посібника є дати основні уявлення щодо предмету та методів теорії систем та їх використання для дослідження біологічних та медичних систем.
1. Системи та закономірності їх функціонування
Впровадження методів обробки і математичного аналізу при вивченні біологічних систем, процесів і явищ пов'язано, з одного боку, із зростанням технічних засобів дослідження біосистеми, а з іншої - з появою обчислювальної техніки і математики, що дозволила отримати чисельне рішення задач, що вважалися раніше такими, що не вирішуються. Немає підстав сумніватися в тому, що розвиток технічних засобів і розробка на цій основі все більш довершених методик дослідження біосистеми дозволять отримати все більш достовірні і обширні дані про роботу біосистеми. Немає основи вважати також, що задачі математичного опису роботи біосистеми є простими. Навпаки, вони складні і являють собою приклад найбільш складних із всіх задач, що відносяться до природи.
Розглянемо тут коротку історію розвитку кібернетики як науки і основні її поняття.
Кібернетика. Слово кібернетика походить від грецького слова cubernhtich - мистецтво керманича. Це слово уперше використав древньогрецький філософ Платон для позначення мистецтва управління кораблем. У 1836 р. французький фізик А. Ампер в своїй загальній класифікації наук визначив кібернетику як науку про управління людським суспільством.
Кібернетика як наука почала формуватися в кінці 40-х років нашого століття. Уперше цей термін в науковий побут ввів американський математик Н. Вінер в 1948 р. в своїй книзі «Кібернетика, або управління і зв'язок в тварині і машині», дату випуску якої і прийнято вважати початком існування цієї науки [1]. Із 8-ми розділів даної книги 4 було присвячено проблемам біології. Для формування кожної науки вельми важливим є визначення основного змісту предмета досліджень. Однак Н. Вінер лише вказав на аналогію процесів управління і зв'язку в живому організмі і в технічних системах.
До цього ж часу американським інженером К. Шенноном була розроблена математична теорія аналізу процесів в системах зв'язку. На аналогії Вінера і теорії інформації Шеннона і розвивалася надалі кібернетика в сучасному її розумінні. Подальше становлення кібернетики пов'язане з роботами таких видатних вчених, як У.Р.Ешбі, А.І.Берг, А.Н.Колмогоров, В.М.Глушков, М.Ферстер, і інших. Формування кібернетики як науки йшло паралельно з уточненням її предмета. У визначеннях предмета різні вчені підкреслювали різні сторони функціонування систем: управління або зв'язок. Так, А. І. Берг вважав, що «... кібернетика вивчає процеси, що відбуваються в живій природі, в людському суспільстві і в промисловості, і відповідно до вироблених цілей і задач забезпечує управління цими процесами в оптимальному варіанті»[2]. В. М. Глушков на відміну від А.І.Берга підкреслює процеси зв'язку в системах, визначає кібернетику як «.. науку. про загальні закони отримання, зберігання, передачі і перетворення інформації в складних керуючих системах» [3].
У. Р. Ешбі [4] і С. Бір [5] вважали, що кібернетика вивчає динамічну організацію складних систем і теорію механізмів такої організації. Ці твердження важливі остільки, оскільки біологи і лікарі, працюючі з найбільш складними об'єктами живими організмами, розглядають організацію складних систем, не відриваючи інформаційні процеси в живому від процесів управління і зміни складності.
Узагальнюючи попередні точки зору на кібернетику як науку, можна сказати, що кібернетика вивчає складність і організацію матеріальних систем і зміну складності і організації внаслідок розвитку систем і їх взаємодії з навколишнім середовищем [6]. При цьому процеси управління і переробки інформації, що протікають в системах, є не самоціллю, а засобом розвитку систем і взаємодії їх зі середою.