Смекни!
smekni.com

Системы и закономерности их функционирования (стр. 1 из 10)

Зміст

Вступ________________________________________________________________________ 1

1. Системи та закономірності їх функціонування_____________________ 2

1.1. Кібернетика та біологія_____________________________________________________ 2

1.2. Поняття системи__________________________________________________________ 15

1.2.1. Визначення системи_______________________________________________________ 15

1.2.2. Основні характеристики системи___________________________________________ 15

1.2.3. Елемент як системне поняття_______________________________________________ 17

1.2.4. Цілеспрямованість системного елемента_____________________________________ 18

1.2.5. Цілісність системного елемента_____________________________________________ 18

1.2.6. математичне моделювання системних елементів______________________________ 19

1.2.7. Компоненти та підсистеми_________________________________________________ 22

1.2.8. Відношення та зв’язки_____________________________________________________ 22

1.2.9. Зворотні зв’язки___________________________________________________________ 23

1.3. Структури та їх представлення______________________________________________ 26

Література_________________________________________________________________ 26

Вступ

У сучасних наукових дослідженнях питома вага біологічних робіт складає одну третину, тобто більше за одну третину наукових працівників світу зайнято аналізом біологічних систем і рішенням прикладних задач біології і медицини. Такий розподіл наукових досліджень пояснюється складністю біологічних систем, біологічних і медичних задач, а також життєвою необхідністю рішення цих задач для людства. Останнім часом результати біологічних досліджень все частіше стають основою для рішення задач в традиційно технічних наукових напрямах: автоматизації, розвитку обчислювальної техніки, конструюванні інтелектуальних роботів.

Рішення цих задач передбачає інтегрування експериментальних і теоретичних досліджень біологічних і медичних систем і все більш широке впровадження в практику цих досліджень математичних методів. Математика є універсальною мовою для опису будь-якого процесу або явища. Внаслідок своєї абстрактності одні й ті ж математичні методи виявляються придатними для вивчення процесів, що мають різну фізико-хімічну природу.

Було б помилкою вважати, що математика тільки в останні п'ятнадцять двадцять років стала використовуватися для опису роботи біологічних систем: вона застосовувалася вже на ранніх етапах дослідження живих організмів (досить згадати математичне дослідження Л. Ейлера системи кровообігу, проведене ще в XVIII в.).

Застосування тих або інших математичних методів для аналізу біологічних систем залежить від експериментальних даних, що має в своєму розпорядженні дослідник, і від задач, які він перед собою ставить. Це, в свою чергу, пов'язано з рівнем знань, досягнутим при вивченні біосистеми, з можливостями і засобами експериментального вивчення біосистеми, зі знанням математики і засобів математичного рішення задач. Математичний опис біологічних систем і процесів удосконалюється по мірі підвищення рівня знань в біології. Процес цей непростий, математичний опис може ускладнюватися на певних етапах дослідження, а потім спрощуватися.

На ранніх етапах застосування математичних методів до опису біологічних систем будь-яка математична формула внаслідок лаконічності набувала значущість біологічного закону. У цей час положення в області застосування математичних методів до аналізу біосистеми змінилося. Дослідники при побудові математичного опису якої-небудь конкретної біосистеми починають усвідомлювати, що вони не охоплюють всієї сукупності властивостей біосистеми і зовнішніх умов. Тому тепер кажуть не про математичні закони, а про математичні моделі біосистеми. Дослідник всякий раз вказує на ті властивості біосистеми, які він відображає в математичній моделі, і вказує те коло задач, для рішення яких призначається модель. Ця обставина пов'язана з поглибленням наших знань про функціонування біосистеми, із збільшенням можливостей експериментального вивчення їх і більш детальними задачами, які ставляться при експериментальному дослідженні.

Прогрес в біології донедавна був пов'язаний в основному із застосуванням методів хімії і фізики при аналізі біосистеми, але основна ідея даного посібника пов’язана з обгрунтуванням можливості використання в біології принципів і законів, характерних для фізичних систем.

Сама поява кібернетики зобов'язана поглибленню досліджень технічних і біологічних систем з точки зору загальних процесів управління, процесів перетворення інформації, вивчення складності і організації. Становлення кібернетики як науки пов'язане з іменами багатьох радянських вчених, серед яких особливе місце займає А. Н. Колмогоров. Розвиток кібернетики в СРСР з виділенням різних прикладних напрямів зобов'язаний зусиллям А. І. Берга, В. М. Глушкова, Н. М. Амосова, А. А. Ляпунова, П. К. Анохіна, В. В. Паріна.

В 30-ті роки 20-го сторіччя філософія стала джерелом появи узагальнюючого напрямку – теорія систем. Основоположником даної теорії вважається Л. фон Берталанфі, біолог, який зробив перший доклад щодо нової концепції на філософському семінарі, користуючись в якості базових понять термінологію філософії.

В 60-ті роки при постановці та дослідженні складних проблем проектування та керування поширився термін “системотехніка”, вперше запропонований Ф.Є.Тємниковим в 1962р як еквівалент перекладу з англійської “system engineering”. Пізніше цей термін почав використовуватися в основному в технічних напрямках теорії систем.

В 1965р. І.Б.Новіковим був запропонований термін системологія, який набув широкого ужитку в роботах В.Т.Кулика та Б.С.Флейшмана.

Щодо задач керування в певний період набув поширення термін кібернетика, запропонований М.А.Ампером, та взятий Н.Вінером для позначення нової “науки про керування в живих організмах та машинах”.

Найбільш конструктивним із напрямків досліджень на сучасному етапі вважається системний аналіз, котрий вперше з’явився в роботах корпорації RAND у зв’язку з задачами військового керування в 1948р.

Метою даного посібника є дати основні уявлення щодо предмету та методів теорії систем та їх використання для дослідження біологічних та медичних систем.

1. Системи та закономірності їх функціонування

1.1. Кібернетика та біологія

Впровадження методів обробки і математичного аналізу при вивченні біологічних систем, процесів і явищ пов'язано, з одного боку, із зростанням технічних засобів дослідження біосистеми, а з іншої - з появою обчислювальної техніки і математики, що дозволила отримати чисельне рішення задач, що вважалися раніше такими, що не вирішуються. Немає підстав сумніватися в тому, що розвиток технічних засобів і розробка на цій основі все більш довершених методик дослідження біосистеми дозволять отримати все більш достовірні і обширні дані про роботу біосистеми. Немає основи вважати також, що задачі математичного опису роботи біосистеми є простими. Навпаки, вони складні і являють собою приклад найбільш складних із всіх задач, що відносяться до природи.

Розглянемо тут коротку історію розвитку кібернетики як науки і основні її поняття.

Кібернетика. Слово кібернетика походить від грецького слова cubernhtich - мистецтво керманича. Це слово уперше використав древньогрецький філософ Платон для позначення мистецтва управління кораблем. У 1836 р. французький фізик А. Ампер в своїй загальній класифікації наук визначив кібернетику як науку про управління людським суспільством.

Кібернетика як наука почала формуватися в кінці 40-х років нашого століття. Уперше цей термін в науковий побут ввів американський математик Н. Вінер в 1948 р. в своїй книзі «Кібернетика, або управління і зв'язок в тварині і машині», дату випуску якої і прийнято вважати початком існування цієї науки [1]. Із 8-ми розділів даної книги 4 було присвячено проблемам біології. Для формування кожної науки вельми важливим є визначення основного змісту предмета досліджень. Однак Н. Вінер лише вказав на аналогію процесів управління і зв'язку в живому організмі і в технічних системах.

До цього ж часу американським інженером К. Шенноном була розроблена математична теорія аналізу процесів в системах зв'язку. На аналогії Вінера і теорії інформації Шеннона і розвивалася надалі кібернетика в сучасному її розумінні. Подальше становлення кібернетики пов'язане з роботами таких видатних вчених, як У.Р.Ешбі, А.І.Берг, А.Н.Колмогоров, В.М.Глушков, М.Ферстер, і інших. Формування кібернетики як науки йшло паралельно з уточненням її предмета. У визначеннях предмета різні вчені підкреслювали різні сторони функціонування систем: управління або зв'язок. Так, А. І. Берг вважав, що «... кібернетика вивчає процеси, що відбуваються в живій природі, в людському суспільстві і в промисловості, і відповідно до вироблених цілей і задач забезпечує управління цими процесами в оптимальному варіанті»[2]. В. М. Глушков на відміну від А.І.Берга підкреслює процеси зв'язку в системах, визначає кібернетику як «.. науку. про загальні закони отримання, зберігання, передачі і перетворення інформації в складних керуючих системах» [3].

У. Р. Ешбі [4] і С. Бір [5] вважали, що кібернетика вивчає динамічну організацію складних систем і теорію механізмів такої організації. Ці твердження важливі остільки, оскільки біологи і лікарі, працюючі з найбільш складними об'єктами живими організмами, розглядають організацію складних систем, не відриваючи інформаційні процеси в живому від процесів управління і зміни складності.

Узагальнюючи попередні точки зору на кібернетику як науку, можна сказати, що кібернетика вивчає складність і організацію матеріальних систем і зміну складності і організації внаслідок розвитку систем і їх взаємодії з навколишнім середовищем [6]. При цьому процеси управління і переробки інформації, що протікають в системах, є не самоціллю, а засобом розвитку систем і взаємодії їх зі середою.