Смекни!
smekni.com

Критерии принятия решений (стр. 3 из 3)

Этот критерий предъявляет к ситуации, в которой принимается решение, следующие требования:

О вероятностях появления состояния Fj ничего не известно; с появлением состояния Fj необходимо считаться; реализуется лишь малое количество решений; допускается некоторый риск

1.8. Составной критерий Байеса-Лапласа минимаксный.

Стремление получить критерии, которые бы лучше приспосабливались к имеющейся ситуации, чем все до сих пор рассмотренные, привело к построению так называемых состав­ных критериев.

Исходным для построенного был BL-критерий Вследствие того, что распределение q=(q1, ..., qn) устанавливается эмпирически и потому известно неточно, про­исходит, с одной стороны, ослабление критерия, а с другой, напротив, с помощью заданных границ для риска и посредством MM-Kритерня обеспечивается соответствующая свобода действий. Точные формулировки состоят в следующем.

Зафиксируем прежде всего задаваемое ММ-критерием опорное значение:

где i0 и j0—оптимизирующие индексы для рассматриваемых вариантов решений и, соответственно, состояний.

Посредством некоторого заданного или выбираемого уровня допустимого риска Eдоп>0 определим некоторое множество со­гласия, являющееся подмножеством множества индексов {1, ... ..., т}:

Величина Ei:=ei0j0 - minjeij для всех i I1 характеризует наибольшие возможные потери в сравнении со значением ei0j0, задаваемым ММ-критерием. С другой стороны, в результате такого снижения открываются и возможности для увеличения выигрыша по сравнению с тем, который обеспечивается ММ-критерием. Поэтому мы рассматриваем также (опять-таки как подмножество множества {1, ..., m}) некоторое выигрышное множество


Тогда в множество-пересечение I1 I2 мы соберем только такие варианты решений, для которых, с одной стороны, в определенных состояниях могут иметь место потери по сравнению с состоянием, задаваемым ММ-критерием, но зато в других состоя­ниях имеется по меньшей мере такой же прирост выигрыша. Теперь оптимальными в смысле BL (ММ)-критерия будут решения

Правило выбора для этого критерия формулируется следующим образом.

Матрица решений ||еij|| дополняется еще тремя столбцами. В первом из них записываются математические ожидания каждой из строк, во втором—разности между опорным значением ei0j0 = ZMM и наименьшим значением minjij) соответствующей строки. В третьем столбце помещаются разности между наибольшим значением maxj еij каждой строки и наибольшим значением maxei0j той строки, в которой находится значение ei0j0. Выбираются те варианты Ei0 строки которых (при соблюдении приводимых ниже соотношений между элементами второго и третьего столбцов) дают наибольшее математическое ожидание. А именно, соответствующее значение ei0j0 – minj еij из второго столбца должно быть меньше или равно некоторому заранее заданному уров­ню риска εдоп. Значение же из третьего столбца должно быть больше значения из второго столбца.

Применение этого критерия обусловлено следующими признаками ситуации, в которой принимается решение:

· вероятности появления состояний FJ неизвестны, однако имеется некоторая априорная информация в пользу какого-либо определенного распределения;

· необходимо считаться с появлениями различных состояний как по отдельности, так и в комплексе;

· допускается ограниченный риск;

· принятое решение реализуется один раз или многократно.

Таким образом, спектр применимости теории распро­страняется далеко за пределы предыдущих критериев. Особо следует подчеркнуть, что действие новых критериев остается вполне обозримым, хотя функция распределения может играть лишь подчиненную роль.

BL (ММ)-критерий хорошо приспособлен для построения практических решений прежде всего в области техники и мо­жет считаться достаточно надежным. Однако задание границы риска εдоп и, соответственно, оценок риска εi не учитывает ни число применений решения, ни иную подобную информацию. Влияние субъективного фактора хотя и ослаблено, но не исключено полностью;

Условие maxj еij maxjеi0 j >= εi существенно в тех случаях, когда решение реализуется только один или малое число раз. В этих случаях недостаточно ориентироваться на риск, связан­ный лишь с невыгодными внешними состояниями и средними значениями. Из-за этого, правда, можно понести некоторые по­тери в удачных внешних состояниях. При большом числе реа­лизации это условие перестает быть таким уж важным. Оно даже допускает разумные альтернативы.

Список литературы

Бинкин Б.А., Черняк В.И. Эффективность управления: наука и практика. М.: Наука, 1982. 143 с.

Мушик З., Мюллер П. Методы принятия технических решений. - М.: Мир, 1990. - 208с

Могилевский В.Д.Методология систем: вербальный подход. / М., Экономика, 1999. 251 с.

Саати Т., Кернс К. Аналитическое планирование. Организация систем. / М. Радио и связь. 1991.