Замкнутые САР реагируют на любые возмущения, приводящие к изменению регулируемой величины, и в этом их достоинство.
Недостатком замкнутых САР является то, что при определенных условиях они могут оказаться неустойчивыми.
Принцип комбинированного регулирования сочетает принцип регулирования по отклонению и по возмущению.
В комбинированных системах принцип по отклонению реализуется с помощью главной обратной связи, а принцип регулирования по возмущению - с помощью связи по возмущению.
В комбинированных системах одновременно возможно достижение полной компенсации отклонений, вызываемых основными возмущающими воздействиями, а также уменьшение отклонений, вызываемых второстепенными возмущениями. Первые системы применяют, когда на объект действует 1-2 возмущения. Замкнутые САР - когда на ОР действует большое количество приблизительно одинаковых по величине возмущений. Наконец, комбинированные САР - когда среди большого количества возмущений можно выделить 1-2 максимальных по амплитуде.
§4. Классификация замкнутых САР.
Замкнутые САР по характеру изменения задающего воздействия принято делить на:
I. Системы стабилизации – системы поддержания постоянства управляемой величины.
σ(t) = const
f(t)= var
II. Системы программного регулирования – системы, у которых задан алгоритм функционирования или задан закон изменения регулируемой величины.
σ(t)=F(t)
f(t)= var
III. В следящих системах алгоритм функционирования заранее неизвестен, регулируемая величина в таких системах должна воспроизводить изменение некоторого внешнего фактора, следить за ним.
σ(t) = var
f(t)= var
IV. Системы с поиском экстремума показателя качества.
В ряде процессов показатель качества или эффективность процесса может быть выражен в каждый момент времени функцией текущих координат системы, и управление можно считать оптимальным, если оно обеспечивает поддержание этого показателя в точке max(min).
Элементы линейной теории автоматического регулирования
После выбора элементов функциональной схемы требуется произвести ее расчет с целью обеспечения заданных показателей качества работы САР. Этим занимается линейная теория автоматического регулирования (ЛТАР). С точки зрения ЛТАР безразлично, из каких элементов составлена САР, важно лишь математическое описание этих элементов.
Для получения математического описания системы обычно составляют описание её отдельных элементов. В частности, для получения уравнения системы, составляют уравнения отдельных элементов. Совокупность этих уравнений и даёт уравнение системы.
Уравнения, а также структурные схемы автоматической системы называют ее математической моделью.
Математические модели описывают элементы и системы автоматического регулирования в двух режимах: установившемся – статике и переходном – динамике.
Математическое описание САР в статике и динамике
§1. Модели статики. Понятие о линейных элементах. Линеаризация реальных элементов САР, её способы и предпосылки.
Статикой называется установившийся режим звена или системы, при котором входной и выходной сигналы звена (или системы) постоянны во времени.
Поведение звена (системы) в статике наглядно отражается его статической характеристикой, под которой понимается зависимость между установившимися значениями выходной и входной величин.
y вых. уст. = f (x вх. уст. )
По виду статической характеристики различают линейные и нелинейные звенья. Статическая характеристика линейного звена представляет собой уравнение прямой линии:
yвых = kxвх+ yo ,где k = tg α
Звенья, статические характеристики которых не являются прямыми линиями, называются нелинейными.
В основном все звенья в природе являются нелинейными.
Вопрос линейности статических характеристик имеет чрезвычайно важное значение. Дело в том, что в динамике САР описываются дифференциальными уравнениями. И если в САР входит нелинейное звено, дифференциальное уравнение получается нелинейным. Решение нелинейных дифференциальных уравнений – процесс трудоёмкий и сложный. Поэтому на практике нелинейные элементы заменяют их линейными моделями для облегчения их описания. Этот процесс называется линеаризацией. Итак, линеаризация нелинейного звена – замена его линейной моделью с сохранением основных свойств нелинейного звена. Простейшими методами линеаризации являются метод касательной, метод секущей и кусочно–линейная линеаризация.
При линеаризации касательной полагают, что в процессе работы объекта рабочая точка статической характеристики будет совершать лишь незначительные колебания вокруг номинального режима и, следовательно, характеристику можно заменить касательной к характеристике в точке А (системы стабилизации).
Для получения уравнения касательной перенесем начало координат в точку А и запишем уравнение касательной в отклонениях от точки номинального режима:
Dу = kDх
Характеристику такого типа можно заменить линейной секущей АА, причём провести её нужно так, чтобы ошибки ∆ 1, ∆ 2, ∆ 3, ∆ 4 были минимальными.
Для каждого отрезка характеристики справедливо линейное дифференциальное уравнение. Переход от одного участка к другому осуществляется «припасовыванием» отдельных решений. При этом решение для конца одного участка является начальным условием для следующего и т.д.В статике все звенья можно разделить на два больших класса: статические и астатические. Статические звенья – звенья, поведение которых в статике описывается статической характеристикой типа yвых = kxвх
Существует большой класс звеньев, для которых статическую характеристику не удается получить, т.е. в зависимость yвых = f (xвх) входит время. Такие объекты называются астатическими. Условно в качестве статической характеристики для астатических звеньев считают зависимость:
т.е. в астатических объектах каждому значению входного сигнала соответствует определенная скорость входного сигнала.Динамика – в общем, философском смысле слова, движение. В динамике выходная величина звена (системы) изменяется во времени вследствие изменения входной величины. Связь между входным и выходным параметрами в отдельном элементе (или системе) в динамике описывается дифференциальным уравнением. Дифференциальное уравнение аналитически выражает характер изменения во времени выходного параметра при определенном виде входного параметра.
В общем виде дифференциальное уравнение может быть записано следующим образом:
где m≤ n (условие физической реализуемости).Решение дифференциальных уравнений высоких порядков представляет известные трудности, поэтому сделаны попытки упростить, решение дифференциальных уравнений. Для этого применяют операторный метод, основанный на преобразовании Лапласа.
Смысл преобразования Лапласа заключается в том, что функции действительного переменного х(t) ставится в соответствие функция комплексного переменного x(p), т.е.
x(t)
x(p), где x(t)- оригинал; x(p)- изображение.Операция преобразования записывается так: L{x(t)}=x(p).
Соответствие выражается интегралом Лапласа:
Таким образом, с помощью этого интеграла можно от функции x(t) перейти к функции (p).
Для того, чтобы записать дифференциальное уравнение в операторной форме, найдем преобразование производной:
L {x'(t)} = ?
Воспользуемся формулой интегрирования по частям:
По формуле интегрирования по частям:
U = e-pt; dV = x’(t)dt;
dU = -pe-ptdt; V = x(t),
тогда