Смекни!
smekni.com

Принципы регулирования (стр. 4 из 10)

yвых(p) = kxвх(p)

По определению передаточная функция находится как отношение выхода ко входу в операторной форме при нулевых начальных условиях:

(2)

Из передаточной функции найдем статический коэффициент передачи звена (в статике все производные равны 0)

Выражение передаточной функции совпадает со статическим коэффициентом передачи, поэтому звено называют статическим.

Из передаточной функции находят переходную и весовую функции в операторной форме:

(3)

Оригинал переходной характеристики находят из таблиц преобразования Лапласа.

Переходная характеристика безинерционного звена имеет вид:



Весовая функция в операторной форме

ω(p)=W(p) (4)

Оригинал весовой функции

ω(t) = L-1 {k } = k d(t)


δ(t)- дельта-функция импульс бесконечно малой длительности и бесконечно большой амплитуды, площадь которого равно 1.

Частотные характеристики звена найдем из выражения комплексной передаточной функции:

(5)

Амплитудно-частотная и фазо-частотная характеристики звена имеют вид:

АЧХ:

ФЧХ:

Графическое изображение частотных характеристик представлено на рисунках:


АФЧХ- годограф вектора K(jw) в комплексной плоскости при изменении частоты от 0 до

.

§2. Инерционное звено первого порядка.

В динамике описывается дифференциальным уравнением первого порядка, которое может быть приведено к виду:

(1)

где T - постоянная времени звена;

k – статический коэффициент передачи звена;

В операторной форме уравнение имеет вид:

Т py(p) + y(p) = kx(p)

А передаточная функция находится как:

Статический коэффициент передачи звена:

Переходная характеристика в операторской форме:

(3)

Оригинал переходной характеристики:

Графическое изображение переходной характеристике имеет вид:


Касательная к начальной точке переходной характеристики отсекает на линии установившегося режима отрезок, равный Т.

T – время, за которое выходная величина достигает установившегося значение, если изменяется с начальной постоянной скоростью.

Весовая функция инерционного звена первого порядка в операторной форме

(4)

Оригинал весовой функции находит из таблиц преобразования Лапласа:


Частные характеристики звена находим из выражения К(jw):

Амплитудно-частотную и фазо-частотную характеристи находим следующим образом:

jвых(w) = arg K(jw) = – arctgw

Графический вид характеристик показан на рисунки:

w

0

1/T

¥

Re(w)

k

k/2

0

Jm(w)

0

-k/2

0


§3. Идеальное дифференцирующее звено.

Дифференциальное уравнение звена:

(1)

Уравнение в операторной форме:

yвых(р) = kpxвх(p)

Передаточная функция:

(2)

т.е. в статике идеальные дифференцирующие звенья отсутствуют. Применяются такие звенья при реализация гибких обратных связей (в статике характеристики равны 0, динамические характеристики отличаются от 0).

Переходная характеристика звена в операторной форме:

(3)

Оригинал переходной характеристики находим из таблиц:


h(t) = L-1 {k} = kd(t).

Частотные характеристики звена определим из выражения K(jw):

(4)

АЧХ: Aвых(w) = ½K(jw)½Aвх=1 = kw ,

ФЧХ: jвых(w) = arg K(jw) = +p/2,

то есть дифференцирующее звено вносит в систему опережение по фазе, равное 90о.

Графический вид характеристик дифференцирующего звена:


§4. Идеальное интегрирующее звено.

Дифференциальное уравнение звена:

Уравнение в операторной форме:

pyвых(p) = kxвх(p)

Передаточная функция и статический коэффициент передачи:

то есть интегрирующее звено не имеет статической характеристики в явно выраженной форме, она не определена. В статике такое звено является астатическим.

Условная статическая характеристика (статический коэффициент) может быть определена:

Переходная характеристика в операторной форме

Оригинал переходной характеристики:

Частотные характеристики звена определяются из

Авых(w) = | K(jw) |Авх=1 = k/w jвых(w) = arg K(jw) = – p/2


§

5. Инерциальное звено второго порядка. Колебательное звено.

Дифференциальное уравнение инерционного звена второго порядка:

в операторной форме:

Т22p2yвых(p) + T1pyвых(p) + yвых(p) = kxвх(p)

Передаточная функция:

Переходную характеристику звена можно найти классическим способом, решая дифференциальное уравнение звена, когда в правой части 1(t)=xвх(t)

Решение однородного уравнения определяются корнями характеристического уравнения звена, которое имеет вид:

Т22p2 + T1p + 1 = 0