Смекни!
smekni.com

Порошковая металлургия и свойства металлических порошков (стр. 3 из 6)

Электрические методы Электроимпульсный метод заключается в воздействии электрического импульсного тока на струю пульпы или расплава. Накопитель энергии – конденсатор – заряжается от источника постоянного или переменного тока. При определенной величине заряда пробивается промежуток, и вся накопленная за время τ энергия выделится за время τ0 в рабочем промежутке и элементах цепи разрядного контура. Электродуговое распыление осуществляется следующим образом. Пруток металла, подлежащего распылению, служит катодом. Анод выполняется в виде водоохлаждаемого полого цилиндра. Используются также плазменные горелки с независимой или зависимой дугой, когда анодом служит распиливаемый материал.

Распыление газовым потоком. В инженерном отношении возможно осуществление трех основных схем разрушения струи: соосным потоком газа, потоком под углом, поперечным потоком. При распылении струи расплава можно выделить три структурные зоны: не распавшуюся сплошную часть струи; зону разделения струи на отдельные волокна, пряди, нити, капли; зону окончательного формирования частиц, интенсивного протекания теплообменного и других процессов.

Распыления жидкостями. Высокая плотность энергоносителя, интенсивное охлаждение капель расплава, образование значительного количества пара в зоне непосредственного контакта жидкости с расплавом. В качестве распыляющей жидкости используется вода или масло. Распыляющий узел форсунки должен обеспечивать возможность использования максимальной силы удара водяной струи, оно связано с длиной ее начального участка, величина которого определяется выходным диаметром насадки, давлением воды перед насадкой и степенью поджатия струи.

Технология получения порошков распылением расплавов. Водой можно распылять низко – и высоколегированные сплавы распылением получают порошки быстрорежущих сталей. Получение порошков титана и его сплавов с низким содержанием кислорода и азота осуществляется в основном центробежным распылением в аргоне, гелии или вакууме. Получение порошков алюминия и магния. Распыление воздухом, азотом, инертными газами используют инжекционные форсунки, в которых металл поступает за счет разряжения возникающего у выхода из сопла при истечении газа из кольцевой щели под давлением 0,4 – 0,6 Мпа.

Физико–химические методы получения металлических порошков. Соединения галогениды металлов, которые восстанавливаются либо водородом, либо активными металлами (натрий и магний). Механизм восстановления большинства твердых соединений газообразными восстановителями основывается на адсорбционно – автокаталитической теории.

Восстановители, используемые при восстановлении порошков. Восстановителями служат газы ( водород, оксид углерода, диссоциированный аммиак, природный конвертируемый, водяной, коксовый или доменный газы, эндогаз), твердый углерод (кокс, древесный уголь, сажа ) и металлы. Выбор восстановителя зависит не только от термодинамических оценок, но и от летучести, которая должна быть минимальной, так как иначе процесс нужно вести при повышенном давлении за счет аргона или других инертных газов.

Железный порошок - основа многотоннажной ПМ. Существуют методы получение порошков из FeCl2. Восстановленный водородом железный порошок имеет высокую чистоту и стоимость.

Восстановление оксидом углерода проводится при температурах выше 1000 ºСна основе адсорбционно – каталитического механизма. Восстановление твердым углеродомпроисходит при 900-1000ºС.

Содовый метод применяется для получения порошка повышенной чистоты. В шихту добавляют 10 – 20% соды с которой при восстановлении взаимодействуют примеси, образуя растворимые в воде натриевые алюминаты.

Металлотермия. Восстановление диоксида титана кальцием. Комбинированный процесс включает в себя восстановление магнием, а после отмывки – кальцием, расход которого снижается в два раза. Восстановление гидридом кальция получают порошок титана и его гидрида. Восстановление хлорида титана натрием. Хлорид титана получают хлорированием концентрата руд, очисткой и фракционной дистилляцией. Восстановление хлорида титана магнием наиболее экономичный способ. Реакция происходит при 800 – 900ºC.

Стальной герметичный аппарат заполняют слитками магния, откачивают воздух, заполняют аргоном, плавят магний, сверху подают лимитированное количество хлорида титана, чтобы не было перегрева.

Восстановление из растворов, газообразных соединений и в плазме. Из растворов соединений Νі, Cu, Co металлы вытесняют водородом в автоклавах. Сдвигать потенциал водорода в отрицательную сторону можно, повышая pH или увеличивая давление водорода. Эффективнее изменять pH, повышение которого на единицу эквивалентно изменению давления водорода в 100 раз. Термические расчеты показывают, указанные меаллы можно осадить уже при 25ºC и 0,1Мпа. Восстановление газообразных соединений водородом осуществляется в кипящем слое из галогенидов вольфрама, рения, молибдена, ниобия и титана. Получение высокодисперсных порошков в плазме перспективно для металлов, карбидов, нитридов и др. Восстановители – водород или продукты плазменной конверсии с высокой температурой и без окислителей. Оксид никеля восстанавливают в струе Ar – H2 или Ar – CO, причем содержание водорода близко к стехиометрическому, а теплообмен и плазмообразование происходят за счет аргона. Реакция лимитируется диссоциацией NiO, полное его восстановление достигается при 7000ºC.

Физико – химические основы получения порошков электролизом. Процесс представляет собой своеобразное восстановление: передача электронов к металлу с одновременной перестройкой структуры происходит не с помощью восстановителей, а за счет електрической энергии. Способ универсален, обеспечивает высокую чистоту порошков. Электролиз – один из самых сложных физико – химических процессов производства порошков. Процесс заключается в разложении водных растворов соединений выделяемого материала. Наличие хлора или фтора на аноде заставляет принимать меры по предотвращению его взаимодействия с электролитом и порошком. Электролит от порошков отделяется отгонкой нагреванием или центрифугированием и отмывкой.

Электролиз водных растворов. Способ для получения порошков меди, серебра, железа, никеля, кобальта, олова и др. Никель, цинк, кобальт образуют равномерные плотные мелкозернистые осадки независимо от природы электролита. Серебро или кадмий растут в виде отдельно сильно разветвляющихся кристаллов при электролизе простых солей, из раствора цианистых солей они выделяются в виде ровного гладкого слоя.

Получение медного, никелевого, железного порошка. Медный порошок получают из раствора сернокислой меди, он имеет высокую чистоту и регулируемую дисперсность. Никелевый порошок получают элетролизом аммиачных растворов хлорно – кислого никеля. Особенности получения железного порошка связаны с тем, что в ряду напряжений железо железо располагается левее водорода, поэтому последний выделяется вместе с водородом, ухудшая выход по току и качества порошка.

Получение порошка тантала смесь фторида и хлорида калия улучшает легкоплавкость, жидкотекучесть и электропроводность электролита.

Получение порошка титана растворимый анод выполняют из сбрикетированных титаносодержащих материалов. Получение порошка циркония. Для его получения необходимо использовать фтороцирконат калия и хлористый калий высокого качества, проводить процесс среди чистого аргона.

Получение железа элктролизом хлоридных расплавов обеспечивает получение порошка очень высокой чистоты.

Получение порошков методами термодиффузионного насыщения, испарения – конденсации. Метод применяется для получения сталей и сплавов, легированных элементами, оксиды которых трудновосстановимы. Получение порошков содержащих три и более металлических компонентов, можно производить совместным восстановлением смеси оксидов с последующим насыщением трудновосстановимыми компонентами из точечных источников. Перенос осуществляется через газовую фазу в виде хлоридов, иодидов или бромидов, образующихся во время нагрева при взаимодействии металлов с продуктами разложения галоидных солей аммония.

Испарения – конденсация. Сущность метода заключается в переводе металла в парообразное состояние и последующей конденсации паров на поверхностях, температура которых меньше точки плавления осаждаемого металла.

Коррозия металлов – их разрушение вследствии химического или электрохимического взаимодействия с внешней средой.

Получение порошков металлоподобных соединений методами прямого синтеза из элементов, восстановления, высокотемпературного синтеза. Металлоподобные соединения имеют, как правило, высокую твердость и температуру плавления, обладают сложной связью, в которой сочетаются металлическая, ионная и ковалентная составляющие. Для получения порошков применяют прямой синтез из элементов, восстановительные процессы, электролиз расплавленных и метод самораспростроняющегося высокотемпературного синтеза (СВС). Восстановительные процессы используют для получения карбидов, боридов, нитридов и силицидов путем восстановления оксидов углеродом или углесодержащим газом.

3. Формирование порошковых материалов.

Понятие формование. Формование (придание порошковой массе определенной формы) металлического порошка представляет собой технологическую операцию, в результате которой металлический порошок образует порошковую формовку, то есть тело с заданной формой, размерами и плотностью.