Для питания электрических нагрузок III категории следует применять однотрансформаторные подстанции. При наличии нагрузок II категории следует, как правило, применять однотрансформаторные подстанции 10-6/0,4 кВ при условии резервирования мощности по перемычкам на вторичном напряжении, достаточном для питания наиболее ответственных потребителей или при наличии складского резерва трансформаторов. Двухтрансформаторные цеховые подстанции применяют при сосредоточенных нагрузках или преобладании потребителей I категории. При наличии потребителей особой группы I категории необходимо предусмотреть третий источник питания.
В вышеуказанном плавильном цехе получается одна двухтрансформаторная пристроенная подстанция, расчитанная на полное обеспечение запросов этого цеха, как в нормальном, так и в аварийном режиме (при выходе из строя одного из трансформаторов).
8. компенсация реактивной мощности.
При выборе числа и мощности цеховых трансформаторов одновременно должен решаться вопрос об экономически целесообразной величине реактивной мощности, передаваемой через этот трансформатор в сеть напряжением до 1 кВ.
Суммарную расчетную мощность конденсаторных батарей низшего напряжения (НБК), устанавливаемых в цеховой сети, определяют расчтетами по минимуму приведенных затарат в два этапа:
1) выбирают экономически оправданное число цеховых трансформаторов;
2) определяют дополнительную мощность НБК в целях оптимального снижения потерь в трансформаторах и в сетях напряжением 6-10 кВ предприятия.
Суммарная расчетная мощность Qнк НБК составит
Qнк=Qнк1+Qнк2, (16)
где Qнк1 и Qнк2 - суммарные мощности НБК, определенные на двух указанных этапах расчтеа.
Минимальное число цеховых трансформаторов Nмин одинаковой мощности Sном.т, предназначенных для питания технологически связанных нагрузок определяется по формуле
Nmin=Pcp.max/(Kз*Sном.т)+DN, (17)
где Рср.мах - средняя нагрузка за наиболее загруженную смену; Кз - рекомендуемый коэффициент загрузки трансформатора; DN - добавка до ближайшего целого числа.
Экономически оптимальное число трансформаторов Nопт определяется по формуле
Nопт=Nмин+m, (18)
и отличается от Nмин на величину m, где m - дополнительно установленные трансформаторы.
Nопт определяют по (18), принимая значения m в зависимости от Nмин и DN по рис. 4.7. стр.106 [5].
При трех трансформаторах и менее их мощность выбирают по средней активной мощности за наиболее загруженную смену Рср.мах
Sном.т³Рср.м/(Кз*Nопт). (19)
Наибольшую реактивную мощность, которую целесообразно передать через трансформаторы с сеть напряжением до 1 кВ, определяют по формуле
Qмах.т=. (20)
Суммарная мощность конденсаторных батарей на напряжение до 1кВ составит
Qнк1=Qср.мах-Qмах.т, (21)
где Qср.мах - суммарная средняя реактивная мощность за наиболее загруженную смену на напряжение до 1кВ.
Если в расчетах окажется, что Qнк1<0, то установка батарей конденсаторов при выборе оптимального числа трансформаторов не требует (составляющая Qнк1 принимается равной нулю) [5].
Дополнительная мощность Qнк2 НБК для данной группы трансформаторов определяется по формуле
Qнк2=Qср.мах-Qнк1-g*Nопт*Sном.т, (22)
где g - расчетный коэффициент, зависящий от расчетных параметров Кр1 и Кр2 и схемы питания цеховой ТП (определяют по рис.4.9. стр.107 [5]).
Значения Кр1 зависят от удельных приведенных затрат на НБК и ВБК и потерь активной мощности, принимается по таблице 4.6 стр.108 [5], Кр2 определяют из таблицы 4.7. стр.109 [5].
Если в расчетах окажется, что Qнк2<0, то для данной группы трансформаторов реактивная мощность Qнк2 принимается равной нулю.
После вышеуказанных действий по справочным данным выбираются конденсаторные батареи соответствующей мощности по результатам расчетов.
Сделаем вычисления реактивной мощности для установки компенсирующих устройств по плавильному цеху:
1. Определим минимальное число цеховых трансформаторов Nмин
одинаковой мощности Sном.т, предназначенных для питания технологически связанных нагрузок определяется по формуле (17):
Nmin=3036,33/(2500*0,7)+0,27=2
2. Вычислим экономически оптимальное число трансформаторов по
(18), по рис. 4.7. стр.106 [5] определим дополнительно установленные трансформаторы m, считая, что DN=0,27 и Nмин=2. По графику m=0, следовательно Nопт=2+0=2 и установки дополнительных трансформаторов не требуется.
3. При трех трансформаторах и менее их мощность выбирают по
средней активной мощности за наиболее загруженную смену Рср.м по (19)
Sном.т.³3036,33/(2*0,7)
Sном.т³2168,81 кВА и отсюда выбирает трансформатор с
номинальной мощность 2500 кВА, то есть такой же который был
выбран в п.6.1. данной работы по выбору трансформаторов, что
подверждает верность предыдущих рассуждений.
4. Наибольшую реактивную мощность, которую целесообразно
передать через трансформаторы с сеть напряжением до 1 кВ, определяют по формуле (20)
Qмах.т= кВар
5. Суммарная мощность конденсаторных батарей на напряжение до
1кВ по (20) составит
Qнк1=2411,76-1740,89=670,87 кВар
6. Дополнительная мощность Qнк2 НБК для данной группы трансформаторов определяется по формуле (22), при этом из таблицы 4.6. стр.108 [5] для предприятия находящегося на Северо-Западе и работающего в три смены Кр1=11, а из таблицы 4.7. стр.109 [5] при мощности трансформатора 2500 кВА и длины питающей линии до 500 м Кр2=5. По рис. 4.9.а) стр.107 [5] в соответствии с указазнными коэффициентами Кр1 и Кр2 g=0,3, тогда
Qнк2=2411,76-0-0,3*2*2500=911,76 кВар
7. Суммарная реактивная мощность НБК по (15)
Qнк=670,87+911,76=1582,63 кВар.
8. По суммарной реактивной мощности выбираем компенсирующее устройство из [2] УКН 0,38-450 с Qном=450 кВар на номинальное напряжение 0,38 кВ. Таких устройств получается четыре по два на каждую секцию. Избыток мощности предусмотрен для обеспечения допустимых отклонений напряжения в послеаварийных режимах (рекомендуется на 10-15% больше).
9. Расчет и выбор магистральных и распределительных сетей напряжением до 1000 В,
защита их от токов короткого замыкания.
9.1. Схемы цеховых электрических сетей и
классификация помещения цехов.
Цеховые сети распределения электроэнергии должны:
- обеспечить необходимую надежность электроснабжения приемников электроэнергии в зависимости от категории;
- должны быть удобными и безопасными в эксплуатации;
- иметь оптимальные технико-экономические показатели (минимум приведенных затрат);
- иметь конструктивное исполнение, обеспечивающее применение индустриальных и скоростных методов монтажа.
Схемы цеховых сетей делят на магистральные и радиальные. Линию цеховой электрической сети, отходящую от распределительного устройства низшего анпряжения цеховой ТП и предназначенную для питания отдельных наиболее мощных приемников электроэнергии и распределительной сети цеха, называют главной магистральной линией. Главные магистрали расчитаны на большие рабочие токи (до 6300 А); они имеют небольшое количество присоеденений. Широко применяют магистральные схемы типа блока трансформатор-магистраль (БТМ). В такой схеме отсутствует РУ низшего напряжения на цеховой подстанции, а магистраль подключается непосредственно к цеховому трансформатору через вводной автоматический выключатель. При двухтрансформаторной подстанции и схеме БТМ между магистралями для взаимного резервирования устанавливают перемычку с автоматическим выключателем.
Распредлеительные магистрали предназначены для питания приемников малой и средней мощности, равномерно распределенных вдоль линии магистрали. Такие схемы выполняют с помощью комплектных распределительных шинопроводов серии ШРА на токи до 630 А. Питание их осуществляется от главной магистрали или РУ низшего напряжения цеховой подстанции.
Магистральные схемы обеспечивают высокую надежность электроснабжения, обладая универсальностью и гибкостью и широко применяются в цехах машиностроительных и металлургических заводов, обогатительных фабрик и т.д.
Для распределительных сетей применяется преимущественно радиальная схема питания отдельных электроприемников от цеховых распределительных пунктов и шинных магистралей.
Радиальные схемы электроснабжения представляет собой совокупность линий цеховой электрической сети, отходящих от РУ низшего напряжения ТП и предназначенных для питания небольших групп электроприемников электроэнергии, расположенных в различных местах цеха. Радиальные схемы применяют в тех случаях, когда нельзя прменить магистральные схемы.
Цеховые электрические сети выполняются изолированными проводами, кабелями и шинами. В отдельных случаях применяются голые провода.
Род и способ прокладки сети должны соотвествовать:
а) состоянию окружающей среды;
б) месту прокладки сети;
в) принятой схеме сети.
В соответствии с [1] установлены следующие классы помещений:
1. Сухие помещения - помещения, в которых относительная влажность воздуха (ОВВ) не превышает 60%.
2. Влажные помещения - помещения, в которых пары или конденсирующая влага выделяется лишь временно и притом в небольших количествах и ОВВ=75%.
3. Сырые помещения - помещения в которых ОВВ длительно превышает 75%.
4. Особо сырые помещения - помещения, в которых ОВВ близка к 100%.
5. Жаркие помещения - помещения, в которых температура длительно превышает +30°С.
6. Пыльные помещения - помещения, в которых по условиям производства выделяется технологическая пыль в таком количестве, что она может оседать на проводах, проникать внутрь машинов и аппаратов и т.д.
7. Помещения с химически активной средой - помещения, в которых по условиям производства постоянно или длительно содержится пары или образуются отложения, действующие разрушающе на изоляцию и токоведущие части электрооборудования.
8. Взрывоопасные помещения и наружные установки - помещения и наружные установки, в которых по условиям технологического процесса могут образовываться взрывоопасные смеси горючих газов или паров с воздухом или другими газами-окислителями, а также горючих пылей и волокон с воздухом.