Смекни!
smekni.com

Электролитная обработка полосы (стр. 1 из 6)

Липецкий государственный технический университет

Кафедра обработки металла давлением

ДОКЛАД

на тему

«ЭЛЕКТРОЛИТНАЯ ОБРАБОТКА ПОЛОСЫ»

Выполнил: студент Лепекин Н.В.

Группы ОД-01-1

Проверил: Пешкова

Липецк 2002

1. Возможности ЭО

2. Виды загрязнений поверхности и существующие способы очистки

3. Электролитная очистка поверхности металлов

4. Очистка поверхности металлов и сплавов от окислов

5. Результаты промышленных испытаний

6. Очистка поверхности сварочной проволоки в электролите

7. Нанесение покрытий при катодной обработке

8. Образование покрытий на поверхности активного анода

ВОЗМОЖНОСТИ ЭЛЕКТРОЛИТНОЙ ОБРАБОТКИ МЕТАЛЛОВ И СПЛАВОВ В ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССАХ ПРОКА ТНОГО, ВОЛОЧИЛЬНОГО И ТРУБНОГО ПРОИЗВОДСТВА.

Многофункциональная электролитная обработка (ЭО) основана на протекании и комплексном воздействии на поверхность и саму заготовку электрохимических, диффузионных и термохимических процессов. ЭО производится, как правило, в водных растворах электролитов солей, слабощелочных и слабокислотных растворах с различными функциональными добавками и заключается в формировании электрических разрядов между анодом и катодом (обрабатываемая деталь) через слой электролита и газо-паровую подушху, окружающую заготовку, в условиях наложения на электроды повышенного напряжения постоянного тока (от 150 В). Состав рабочей среды, электрические, гидродинамические и тепловые режимы, конструкция узла ЭО определяют цель и технологическое назначение процесса. Ниже приводятся результаты промышленного применения и экспериментальных разработок возможностей процесса.

ОЧИСТКА ПОЛОСЫ ОБЕСПЕЧИВАЕТ:

чистоту поверхности полосы до 0,00-0,05 г/м2 (в зависимости от степени очистки электролита);устраняет необходимость применениястандартных способов очистки - химического, механического, электролитического (до 40В) и одного узла промывки полосы;позволяет вести поверхностное легирование стали, в частности, для электротехнической- силицирование и обезуглероживание, а также возможность управлять доменной структурой металла;увеличить сцепление покрытий различного назначения с поверхностью полосы за счет увеличения ее площади и изменения геометрии микроразрядами;значительно повысить коррозионную стойкость полосы.

Размеры установки ЭО для электротехнической стали шириной 1000 мм. при скорости 2 м/сек - 2х2 х2 м. Результаты получены при производстве десятков тысяч тонн электротехнической стали на НЛМК и ММК. Новизна разработок подтверждена 6-ю изобретениями.

НАСЕЧКА ПРОКАТНЫХ ВАЛКОВ ОБЕСПЕЧИВАЕТ:

повышение износостойкости валков в 2-3 раза;

шероховатость - от 0,4 до 10 мкм;

изотропность выступов вдоль и поперек прокатки -0,8-1,0;

число выступоввабазовой длине - регулируемое 50-250 шт/см;

устранение возникновения дефекта «навара» полосы на валок при обрыве в непрерывных станах;

повышение поверхностной твердости валка;

вдвое снизить свариваемость металла в рулонах при высокотемпературном отжиге в колпаковых печах за счет «развитой» поверхности полосы;

определять визуально дефекты валка, допущенные при изготовлении и при пере шлифовках;

стоимость установки электролитной насечки валков в 30-50 раза ниже зарубежных аналогов (лазерный, разрядный).

Разработки защищены нами патентами России, а также запатентованы Америкой, Англией, Германией. Прокатано на валках с электролитной насечкой 1000 тонн электротехнической стали и автолиста наНЛМК, ММК,Череповецком меткомбинате, Ашинском метзаводе и Запорожском

меткомбинате.

ИЗГОТОВЛЕНИЕ КОРРОЗИОННО-СТОЙКИХ ТРУБ С ПОКРЫТИЕМ.

Сущность способа однойоперации ЭО поверхности изделия в растворе определенного состава и заданных режимах.

Наиболее близким по технологии является способ изготовления газонефтепроводных труб (Н.В. Курганов «СТАЛЬ», № 10, 1999 г., с.55-58), включающий термическое обезжиривание, дробеметную обработку и кислотную очистку с последующим нагревом в печи, последовательным нанесением защитных слоев из эпоксидного праймера, адгезива я полиэтилена, охлаждение, проверку сплошности, отделку и контроль качества покрытия. Основной недостаток способа в том, что подготовка поверхности перед нанесением покрытия включает три сложные, продолжительные, самостоятельные технологические операции, направленные на улучшение качества соединения покрытия с металлом трубы. При этом коррозионная стойкость в большей степени определяется защитными покрытиями и качеством его нанесения.

Процесс ЭО позволяет совместить в одной операции все выше названное. Электротехническая сталь, очень склонная к коррозии, даже в течение дня, после года хранения в условиях «снег- дождь- тепло- дождь» осталась без следов коррозии. Валки прокатных станов после электролитной насечки не ржавеют в аналогичных условиях в сравнении с валками после дробеметной обработки.

Большие возможности процессаЭОпредставляются в технологии волочильного производства. Обработка высоколегированной проволоки на опытно- промышленной установке позволила совместить в одной технологической операции очистку поверхности, высокотемпературную обработку и нанесение защитно - смазочного подслоя из состава электролита при необходимости дальнейшего волочения. Размеры электролитного узла- 400 мм, скорость проволоки до 2 м/сек.

ОЧИСТКА ПОВЕРХНОСТИ МЕТАЛЛОВ И СПЛАВОВ В ЭЛЕКТРОЛИТЕ С ИСПОЛЬЗОВАНИЕМ ПОВЫШЕННЫХ НАПРЯЖЕНИЙ

1. Виды загрязнений поверхности и существующие способы очистки

Состояние поверхности металлов и сплавов оказывает большое влияние на эксплуатационные качества готовых изделий. Важную роль играет под готовка поверхности на промежуточных операциях, поскольку вносимые при их проведении загрязнения могут дать дефекты, исправление которых на дальнейших стадиях изготовления продукции весьма затруднительно.

Встречающиеся на поверхности стальных изделий загрязненияможно разбить на три основные группы:

1) твердые окисные и солевые образования (окалина, ржавчина, про­дукты травления и т. д.),

2) масляные, жировые и эмульсионные пленки, наносимые специально при прокатке и штамповке в качестве смазки,

3) твердые и жидкие загрязнения случайного характера (пыль, металли­ческие частицы и т. д.).

Загрязнения первой группы почти нерастворимы в воде, щелочных и органических растворителях, но хорошо растворяются в кислотах. Мине­ральные масла растворяются в органических растворителях (бензине, бен­золе, эфире и т. д.). В щелочной среде они диспергируются и образуют

эмульсии, отделяющиеся от поверхности металла: Животные и раститель­ные масла сравнительно легко омыляются щелочами, растворяются в орга­нических растворителях и образуют водорастворимые соединения с некото­рыми кислотами.

Продукты взаимодействия животных и растительных жиров с применя­емыми для очистки растворами также могут быть эмульгированы. Частьизних растворима в воде, часть реагирует со щелочами с образованием водорастворимых соединений.

Масла и жиры при нагреве в окислительной среде сгорают, а в восста­новительной и нейтральной - разлагаются, перегоняются и испаряются.

При определенных условиях на поверхности металла может остаться твердый остаток, удаление которого весьма затруднительно.

Загрязнения третьей группы обычно удаляются техническими способами (щетками, сильной струёй воды, действием ультразвуковых колебаний).

Существенную роль в процессах очистки играет состав стали и состояние ееповерхности. Содержащиеся в стали легирующие элементы и примеси сильно влияют на состав и структуру окисных пленок, образующихсянаповерхности.

Разнообразная природа загрязнений поверхности приводит к необходи­мости выполнять различные операции очистки в определенной последова­тельности. При этом за каждой химической операцией должна следовать соответствующая промывка поверхности. :

При химическом обезжиривании очищающая жидкость должна хорошо смачивать поверхность металла. Только в этом случае можно достичь такого контакта, при котором может произойти либо растворение загрязнения, либо его отрыв от поверхности. Это происходит в том случае, если коэффи­циент поверхностного натяжения (или поверхностная энергия) на границе металл - газ превышает сумму соответствующих аналогичных характери­стик на границах металл - жидкость и жидкость - газ. При большой величине поверхностной энергии границы металл - жидкость наблюдается явление полного несмачивания. Промежуточное состояние характеризуется определенной величиной краевого угла смачивания (угла между поверхно­стью металла и касательной к поверхности жидкость - газ в точке сопри­косновения трех сред).

Жидкое загрязнение удаляется с поверхности при помощи нерастворя­ющейся жидкости в том случае, если она способна образовывать на границе с металлом краевой угол, меньше краевого угла, образуемого жидким

загрязнением» При этом очищающая жидкость должна прника-пь через

тонкую пленку жидкого загрязнения непосредственно к поверхности металла.

Вытеснение пленки очищающей жидкостью почти всегда сопровожда­ется химическим взаимодействием их компонентов. Последнее играет ре­шающую роль при растворении загрязнений органическими растворителя­ми. Интенсификация этих процессов достигается применением поверхно­стно-активных веществ (ПАВ), которые помогают отделить частицы загряз­нения от поверхности металла с образованием эмульсии и удерживают в ней частицы, не давая им возможности повторно осесть. Для интенсификации процессов при химическом обезжиривании часто применяют ультразвук.

Электрохимическое обезжиривание в щелочных растворах протекает быстрее, чем химическое. В качестве электролитов используются растворы тех же веществ (МаОН, КОН, МазР04, Nа2СОз, Ма2&Юз), что и при химическом обезжиривании. Механизм процесса электрохимического обез­жиривания сводится, в основном, к эмульгированию жиров пузырьками водорода (на катоде) или кислорода (на аноде).