Курсовая работа по физическим основам получения информации
Выполнил Москалев А. В., студент гр. ИВК-03-01
Пермский государственный технический университет
Кафедра ИВК
Пермь 2005
1. Назначение:
Бортовые связные радиостанции предназначены для обеспечения связи экипажа с наземными командно-диспетчерскими пунктами как на малых (являются резервными для командных PC), так и на больших расстояниях (до нескольких тысяч километров). Связные PC работают в диапазоне волн 2 ...24 МГц и обеспечивают:
симплексную связь телефонную (в режимах амплитудной модуляции и однополосной модуляции);
телеграфную (в режимах амплитудной модуляции AT, частотной модуляции ЧТ).
Перестройка каналов в рабочем диапазоне частот — дискретная. Малый шаг сетки частот PC обеспечивает достаточно точную настройку на частоты наземных PC, что позволяет осуществлять связь бортовых PC со всеми типами наземных PC. PC обеспечивают симплексную телефонную и телеграфную связь. При использовании телеграфной модуляции (применяется амплитудная и частотная телеграфия) дальность связи возрастает.
Применяются следующие типы связных PC: на ВС — «Микрон», «Карат» (на ВС местных воздушных линий). В настоящее время широко используется также радиостанция «Ядро».
2. Структурная схема бортовой PC :
Содержит следующие типовые узлы (рис. 1): антенну А, приемопередатчик Прм — Прд, блок питания БП, пульты непосредственного и дистанционного управления ПУ, устройство настройки и контроля УНК и оконечные устройства - микрофон (Мкф) и телефон (Тлф). Приемо-передатчик состоит из генератора передающего и приемного каналов.
Рис. 1. Структурная схема бортовой радиостанции передатчика
Передающий канал образуют генератор Г, передатчик Прд, антенный переключатель АП, антенна А (рис. 2).
Рис. 2. Структурная схема приемо-передатчика
Приемный канал образуют антенна, АП и Прм.
Трансиверная схема построения PC использует при приеме и передаче одни и те же функциональные узлы — генератор, АП и антенну.
Генератор обеспечивает получение высокостабильных (как по частоте, так и по амплитуде) колебаний, работает в автоколебательном режиме на одной частоте, преобразуя энергию постоянного тока блока питания в энергию электрических колебаний переменного тока нужной частоты. В передатчике такой генератор называется задающим, в приемнике — гетеродином. Высокая стабильность частоты генератора обеспечивается применением в его схеме кварцевой стабилизации.
3. Структурная схема приемника (рис. 3):
Структурная схема супергетеродинного приемника приведена на рис. 3, на рис. 3.1б, в, г, д, е, ж изображены спектры колебаний на выходе каждого каскада. Представляющий интерес радиосигнал с выхода антенны (рис. 3.1б) выделяется, отфильтровывается входной цепью (рис. 3.1в) и поступает на преобразователь, а на входе преобразователя появляется модулированный радиосигнал с несущей промежуточной частотой (рис. 3.1г). Этот радиосигнал усиливается усилителем промежуточной частоты (УПЧ) (рис. 3.1д), детектируется, в результате чего получается низкочастотный управляющий сигнал (рис. 3.1е). Управляющий сигнал усиливается усилителем звуковой частоты (УЗЧ) (рис. 3.1ж) и поступает в громкоговоритель.
Рис. 3. Структурная схема приемника супергетеродинного типа
Рис. 3.1. Спектры колебаний
3.1. Преобразователи частоты:
Преобразователем частоты в супергетеродинном приемнике называют устройство, осуществляющее преобразование несущей радиочастоты принимаемого сигнала в несущую промежуточную частоту без изменения модуляции сигнала, т. е. назначением преобразователя частоты является перенос спектра радиосигнала из одной области частот в другую. Промежуточная частота может быть как выше радиочастоты, так и ниже. Это обусловлено удобством реализации процессов фильтрации и других операций обработки сигнала.
Рис. 3.2. Структурная схема преобразователя частоты
Принципиально для преобразования частоты сигнала необходим либо нелинейный элемент, либо элемент с переменным параметром. На этот элемент подают колебания от вспомогательного источника, называемого гетеродином. В связи с этим нелинейный элемент, преобразующий частоту принимаемого сигнала с помощью гетеродина, называют смесителем. В состав преобразователя частоты входит также резонансная нагрузка, с помощью которой осуществляется селекция составляющих сигнала с промежуточной частотой. В качестве такой нагрузки наиболее часто используют полосовой фильтр. Структурная схема преобразователя изображена на рис. 3.2.
4. Структурная схема передатчика включает (рис. 4):
Рис. 4. Структурная схема передатчика
АМ—амплитудный модулятор; УНЧ—усилитель низкой частоты; МкУ—микрофонный усилитель; ГВЧ—генератор высокой частоты; УМ—усилитель мощности; А—антенна; Кл—ключ для переключения в телеграфный режим.
Режимы работы связной PC:
амплитудная модуляция (AM);
однополосная модуляция (ОМ) с частично подавленной несущей; амплитудная манипуляция (AT);
частотная манипуляция (ЧТ).
Амплитуда модулирующего сигнала при AM модуляции
Uмод = Um cos 2πFt,
где Um — значение амплитуды сигнала; F — частота колебаний; t — время.
Колебания несущей (модулируемой) частоты изменяются по закону
U = Um (t) cos2nfн t, (1)
где Um — значение амплитуды; fн — значение несущей частоты.
В процессе AM амплитуда несущей частоты изменяется по закону
Um(t)=Um0 + ΔUmcos2πFt, (2)
где U т0 —амплитуда немодулированного колебания; ΔUm= Kа.м Umмод (здесь Kа.м – коэффициент передачи модуляционного устройства).
Подставляя Um(t) из выражения (2) в формулу (1), получим
U = Um0 [cos2πfнt + m/2cos2π(fн – F)t + m/2cos2π(fн + F)t],
где m= ΔUm/Um0 — коэффициент амплитудной модуляции.
Спектр AM колебаний при гармоническом модулирующем сигнале (рис. 5) состоит из трех составляющих: несущей частоты fн, нижней боковой частоты (fн — F) и верхней боковой частоты (fн + F). Амплитуды составляющих зависят от коэффициента модуляции т. Если амплитуда Um0 неизвестна, то коэффициент модуляции
m=(Umax - Umin)/(Umax + Umin).
Модулирующий сигнал сложный и содержит составляющие с частотами от Fmin до Fmax . Каждой из них соответствует своя составляющая нижней и верхней боковых частот модулированного колебания. Спектр AM колебаний содержит две боковые полосы частот. Следовательно, ширина спектра сигнала в канале радиосвязи Δf в 2 раза больше, чем ширина спектра модулирующего сигнала.
Однополосная модуляция с подавленной несущей (ОМ) путем фильтрации АМ-сигнала формирует однополосный сигнал (фильтры передающего тракта не пропускают несущую и одну боковую полосу). Полезная информация при этом не теряется, так как нижняя и верхняя боковые полосы абсолютно идентичны, а несущая частота информации не несет. Несущая частота нужна при приемке для восстановления АМ-сигнала для последующего детектирования. Наибольший энергетический выигрыш дает полное исключение несущей частоты и одной боковой полосы. Переход на однополосную работу равносилен 16-кратному выигрышу по мощности.
Режим однополосной модуляции с частично подавленной несущей реализуется путем отфильтровывания одной боковой полосы и частичного уменьшения амплитуды несущей.
Рис. 5. Эпюры модулирующего синусоидального напряжения
Разновидность амплитудной модуляции — амплитудная телеграфная AT) манипуляция Сигнал передается в виде азбуки Морзе (точки и тире).
Частотная манипуляция (ЧТ) реализуется путем передачи сигнала азбукой Морзе, когда «точке» соответствует одна частота колебаний, а «тире» другая частота.
Временные диаграммы:
Гармоническое колебание (ГК)
Колебания ГВЧ(Генератора высокой частоты)
ГВЧ+ГК
АМ(Амплитудная модуляция)
Продетектированный сигнал
Частотная модуляция(ЧМ)
5. Формирование и прием сигналов с ОМ:
В принципе сигнал с ОМ можно получить из сигнала с AM путем подавления несущего колебания и одной из боковых полос модуляции с помощью фильтра, пропускающего лишь колебания интересующей нас верхней или нижней боковой полосы частот. Однако частотная характеристика такого фильтра должна обладать очень крутым склоном со стороны отфильтровываемой несущей, что технически трудно реализуемо. Проще формировать сигнал с ОМ путем использования балансной модуляции с последующим выделением одной из боковых полос.
Балансной модуляцией (БМ) принято называть процесс перемножения мгновенных значений модулирующего и несущего колебаний. На примере модулирующего гармонического колебания частоты Ω можно убедиться, что в процессе БМ возникают колебания двух боковых частот и подавляется несущее колебание. В самом деле, перемножая мгновенные значения несущего u=Umcosωt и модулирующего uм=UmмcosΩt колебаний, находим
uбм=0.5UmUmм[cos(ω+Ω)t+cos(ω-Ω)t].