Если при сквозном прозвучивании пластин из любых материалов изменять частоту генератора, возбуждающего электроакустический преобразователь, то можно увидеть на некоторых частотах так называемый эффект монохроматора, известный в оптике еще как эффект просветления. Эффект этот заключается в том, что, в результате интерференционных (а в данном случае, это действительно так) процессов при многократном переотражении сигнала внутри слоя на некоторых частотах сигнал проходит через пластину целиком при абсолютном отсутствии отражения от нее. Условие эффекта монохроматора заключается в том, что на толщине пластины h должно укладываться целое количество полуволн продольных колебаний или, иначе говоря,
, где (2)fмх - частоты, на которых наблюдается эффект монохроматора,
n - любое целое число,
Vпр - скорость продольных волн.
На других частотах зондирующий сигнал частично отражается от пластины, и за счет этого уменьшается уровень сигнала, который проходит сквозь пластину. Эффект монохроматора можно наблюдать на пластинах из всех твердых сред. Однако при исследовании пластин не из оргстекла, а из других, перечисленных выше материалов, обнаружился еще один эффект, по смыслу диаметрально противоположный эффекту монохроматора. Как оказалось, на некоторых частотах (fАРП) отсутствует не отражение, а прохождение сигнала через пластину, но при этом не увеличивается отражение от нее. Естественен вопрос: а куда же девается та часть сигнала, которая и не проходит насквозь, но и не идет на увеличение отражения?
И опять год поисков. В результате которых оказалось, что искомая часть сигнала излучается пластиной через ее же собственные торцы. Этот эффект, по аналогии с ферромагнитным, парамагнитным и другими известными в физике эффектами резонансного поглощения, был назван эффектом акустического резонансного поглощения. Переориентация первичного акустического потока в ортогональном направлении есть следствие того, что эффект АРП идет на поперечных волнах.
Условие эффекта АРП следующее:
, где (3)m - любое нечетное число,
VСДВ - скорость поперечных (сдвиговых) волн.
Низшая частота, на которой наблюдается эффект АРП (при m =1), оказалась равной частоте f0, которая возникает при ударном возбуждении слоя-резонатора. Отсюда и название эффекта, так как совпадение собственной частоты с возбуждающей - это и есть резонанс. Таким образом, числитель формулы (1) есть не что иное, как скорость поперечных волн VСДВ.
Любой новый физический эффект - это бездна информации. Особенно когда это касается такого фундаментального эффекта как АРП. Ограничиваясь рамками настоящего повествования, можем отметить, что:
Слои из большинства твердых сред являются резонаторами, то есть при ударном воздействии они откликаются гармоническим затухающим процессом на частоте, равной f0.
Собственный колебательный процесс идет на поперечных волнах, и поэтому реализация эффекта АРП может считаться первым метрологически корректным способом определения скорости поперечных волн.
Наличие приповерхностных зон, в которых скорость распространения упругих волн не является постоянной, а уменьшается с приближением к границе, является условием существования резонатора. Мы научились уничтожать эти зоны, и тогда стеклянные, металлические и т.п. пластины перестают быть резонаторами. Мы научились создавать эти зоны, и тогда пластины из оргстекла, жидкостные и газовые слои становятся слоями-резонаторами.
Слой-резонатор - это частный случай. Резонатором является объект любой формы при наличии приповерхностных слоев с непостоянной скоростью звука, но при этом количество собственных частот колебательного процесса, возникающего в этом объектах, равно количеству его размеров. К примеру, параллелепипед имеет три размера и, соответственно, три частоты его собственного звучания.
Определяя с помощью спектрально-акустических измерений спектр собственного звучания, нетрудно определить размеры объекта, а также выявить скрытые границы, в частности, обусловленные дефектами материала. И этот факт породил спектрально-акустическую дефектоскопию.
Границы, выявляемые при спектрально-акустических измерениях, представляют собой поверхности, по которым возможно взаимное проскальзывание соседних сред. Это определяется тем, что формируются собственные колебания на поперечных волнах.
Понятно, что до тех пор, пока не будет создан формально-математический аппарат для описания преобразования импульсного воздействия в гармонический отклик наподобие того, как это было сделано Кельвином для электрического колебательного контура, открытие акустической колебательной системы нельзя считать завершенным. И, вместе с тем, мы не только имеем право объявить о рождении новой, неведомой ранее колебательной системы, но, и обязаны это сделать, так как практическое значение этого факта просто огромно. На базе этого нового знания создана спектральная сейсморазведка, на счету которой уже есть несколько новых месторождений полезных ископаемых. Кроме того, с помощью спектральной сейсморазведки оказалось возможным впервые, за всю историю строительной науки оценивать и прогнозировать надежность инженерных сооружений. Метод спектрально-сейсморазведочного профилирования (ССП) позволяет еще до начала строительства дома показать, где в будущем доме начнут развиваться трещины, и как передвинуть строительную площадку, чтобы этих трещин не было. Я не ставлю своей задачей перечислять все возможности этого метода, а заинтересовавшимся можно заглянуть на сайт http://www.newgeophys.spb.ru/, где, кроме примеров использования метода ССП, опубликована книга по основам спектрально-акустического направления в физике. Сейчас же, когда спектральная сейсморазведка показала свою жизнеспособность, возникла необходимость найти точки соприкосновения нового метода с уже существующими, традиционными сейсмометодами.
При поисках этих точек соприкосновения мне необходимо было очертить реальные возможности также и методов традиционной сейсморазведки. Признаюсь, что задача оказалась очень сложной. Специально для этого общаясь с действующими сейсморазведчиками различных организаций, я искал случаи, когда полученные сейсморазведчиками результаты сравнивались с результатами, полученными при использовании других методов, как геофизических, так и разведочного бурения. Надо сказать, что результаты сейсморазведки всегда подтверждают уже имеющуюся геологическую информацию, но чтобы было наоборот, то есть, чтобы сейсморазведка выполнялась вначале, а затем ее результаты проверялись бы другими методами - такого мне встретить не удалось. И тогда я отправился к первоисточнику сообщений о том, что западносибирская нефть открыта главным образом за счет применения сейсморазведки.
Увы, разочарование было полным. Как показало расследование, разведка на тюменскую нефть велась в следующей последовательности. Вначале делалась геологическая и геофизическая (но не методами сейсморазведки) съемка, затем на выявленных аномалиях осуществлялось разведочное бурение, и только после этого, там, где из скважины шла нефть, делали сейсморазведку. О моей растерянности нетрудно догадаться. На вопрос, в чем же был смысл применения сейсморазведки, мне ответили, что это самый дорогой метод, и его наличие обуславливает финансирование геофизиков. Естественно, что в дальнейшем сейсморазведчики это категорически отрицали. Но я с тех пор во всех подходящих случаях в той или иной форме предлагаю сейсморазведчикам осуществить свои исследования при условии полного отсутствия априорной информации.
Результат такого опроса абсолютно устойчив. Ни один сейсморазведчик, ни в одной стране Мира, никогда не согласится проводить исследования при отсутствии информации о геологическом строении. Правда, как оказалось, и из этого можно сколотить научный капитал. Так, геофизики СПб университета, когда я проводил там семинар, квалифицировали метод спектральной сейсморазведки как антинаучный, поскольку для проведения его не требуется никакой априорной информации. Но это так, из области парадоксов.
Вот круг и замкнулся. Не может работать метод, основанный на несуществующих эффектах. А отказаться от этого метода бывает очень трудно, потому что, с одной стороны, слишком дорого обошелся, а с другой, ну кто же будет отказываться от источника собственного финансирования...
И стало окончательно ясно, что переход от общепринятой, но абсолютно неинформативной сейсморазведки к спектральной связан со сменой парадигмы акустики.
Обычно, при рассмотрении подобных ситуаций считается, что старая парадигма должна войти в новую как составная часть, как частный случай. В качестве примера обычно приводится вхождение ньютоновской, классической механики в теорию относительности. Но необходимо уточнить. В новую парадигму могут войти только те составные части старой парадигмы, которые не являются научным заблуждением. Так что в новую теоретическую акустику (я бы ее назвал комплексной акустикой, поскольку она изучает не только распространение звука, но и преобразование спектра) войдет совсем немного от современной теоретической акустики - лишь законы распространения поля упругих колебаний в газах, жидкостях и твердых средах типа оргстекла.
Для стороннего наблюдателя, лично не заинтересованного ни в одном, ни в другом подходе к описанию поля упругих колебаний, мне кажется, я показал достаточно убедительно если не полную ошибочность традиционного подхода в акустике, то, по крайней мере, необходимость его проверки. Однако это совсем не означает, что в обозримом будущем кто-то из акустиков-теоретиков прислушается к сделанным мною выводам. Для того чтобы объяснить, почему я так думаю, позволю себе еще одно отступление.