Электрическое строение типичного грозового облака биполярно ? основной положительный и отрицательный заряды располагаются в верхней и нижней частях облака соответственно. Вблизи основания облака под отрицательным зарядом обычно располагается дополнительный положительный заряд. В зависимости от условий (в частности, от широты местности) возможны различные значения верхнего положительного и нижнего отрицательного зарядов.
Электрическое поле в облаках обусловлено распределением объемных зарядов, создаваемых всеми носителями зарядов в данном облаке. В грозовых облаках происходит весьма быстрое накопление больших объемных зарядов. Средняя плотность объемного заряда может составлять порядка (0,3?3)-10-8 Кл/м3, а средняя скорость накопления зарядов (0,1?10) • Ю-9 Кл/(м3 • с). Области с максимальной плотностью зарядов имеют размеры порядка нескольких сотен метров. В таких локальных объемах облака создаются условия, благоприятные для инициирования молний. По современным представлениям наиболее часто встречаются объемы с максимальной плотностью зарядов (зоны неоднородности) размером 200?400 м.
Электрическая активность гроз, выраженная частотой разрядов молний, изменяется в широких пределах ? от одного до нескольких десятков разрядов в минуту. Молниевая активность гроз зависит от размеров и количества грозовых ячеек.
Принципиально возможны следующие основные пути подавления грозовых явлений. Могут быть предприняты меры к тому, чтобы развивающееся грозовое облако ?разрядить¦ на землю до подхода к охраняемому объекту, заставив разряд пройти по искусственно созданному пути, либо создать условия для ?короткого замыкания¦ внутри облака, либо подать в облако заряд, нейтрализующий естественно образующийся, либо попытаться разрушить облако, либо, наконец, воздействуя на его химический состав, воспрепятствовать развитию в нем электрических явлений.
Искусственно вызванный разряд облака на землю реализовывался практически неоднократно [2]. Известны опыты, когда в результате глубинных взрывов в море, поднимавших фонтаны воды на высоту около 70 метров под грозовым облаком, происходили разряды облаков в море. Также практически были проведены разряды грозовых облаков на поверхность земли (моря) с помощью проволоки, которая доставлялась к облаку ракетой. Обычно разряд происходил, когда ракета поднималась на высоту порядка 100 м. Этого оказывалось достаточным, чтобы разрядить на землю грозовое облако с высотой нижней границы около километра. Были также попытки использовать в целях создания канала для молнии пучок протонов, полученных на синхротроне, а также с помощью лазеров. Основными недостатками указанных методов являются ряд чисто технических трудностей.
Имелись проекты рассеивания в облаках металлических или металлизированных пластинок и нитей, играющих роль проводников короткого замыкания и одновременно микроразрядников, на которых вследствие наличия в облаке собственного электрического поля создается падение потенциала, достаточное для коронного разряда, ослабляющего электрическое поле облака. И лишь только технические и организационные трудности при осуществлении подобных опытов заставили усомниться в их практической целесообразности.
Опыты по засеву облаков кристаллизующими реагентами с целью изменения их электрического состояния показали, что при соответствующих условиях можно вызвать интенсивную электризацию облака, и один из путей управления электрическим состоянием грозовых облаков связан с управлением процессом кристаллизации. Но результаты подобных воздействий пока недостаточно определены.
В данной работе для снижения грозовой активности предлагается использовать эффект объемного взрыва в зоне грозовых облаков. Для более полного понимания явлений, протекающих в грозовом облаке при подрыве в нем заряда объемно-детонирующей смеси (ОДС), кратко остановимся на физических особенностях процессов внутри зоны взрыва ОДС.
Облако продуктов взрыва ОДС представляет собой объем вещества, нагретого до температуры 3000?4000 К. При таких температурах начинается ионизация атомов и молекул, входящих в состав облака. Объем газа, разогретого до таких температур, принято называть холодной (низкотемпературной) плазмой, поскольку в этом случае энергия, приходящаяся на один электрон, много меньше энергии связи ядра в атоме. Практически мгновенное изменение температуры приводит к тому, что в плазме происходит перераспределение электрического заряда в области продуктов взрыва как в пространстве, так и во времени. Это связано с величиной концентрации свободных электронов в плазме, образующихся в ходе термической ионизации.
Теория термической ионизации Саха дает для воздуха с температурой 30000 К величину концентрации электронов N = 1014 1/м3 (при давлении 1 кгс/см2). Однако эта теория предполагает, что плазма равновесна. Наличие неравновесности может привести к перераспределению пространственного заряда. Теории, по которой можно было бы рассчитать величину концентрации электронов в неравновесной плазме, в настоящее время не существует. Поэтому для определения величины концентрации электронов в плазменном объеме, образующемся при подрыве зарядов на основе ОДС, был использован метод, основанный на применении экспериментально измеренной величины коэффициента затухания электромагнитной волны, прошедшей сквозь плазму.
На рис. 2 приведены графики зависимостей концентрации электронов для различных температур для облака толщиной 10 м. Кривая 7 рассчитана по формуле Саха для ионизации воздуха при 1 кгс/см2. Кривая 3 получена на основании методик [3, 4]. Кривая 2 построена на основании экспериментальных работ. Из приведенных результатов можно сделать вывод, что концентрация свободных электронов в плазменном облаке, образующемся при взрыве ОДС, составляет величину не менее 1017 1/м3, и может быть с удовлетворительной степенью точности определена теоретически по уравнениям Саха и методикам [3, 4].
Из сказанного выше ясно, что появление в грозовой ячейке плазмы с такой концентрацией свободных электронов создает благоприятные условия для снятия электрического разряда в данной зоне облачности, а следовательно для снижения грозовой опасности.
Практически этот метод реализован с использованием ракеты ?Облако¦. Заряд ОДС массой 2,8 кг размещается в головной части ракеты. С помощью локатора МРЛ-5 определяется очаг грозовой опасности в облачных скоплениях и его координаты. В это место производится пуск ракеты и осуществляется подрыв головной части с помощью дистанционного временного устройства (пиротехнического типа).
2600 2800 3000 Т, К
Рис. 2. Зависимость концентрации N свободных электронов от температуры Т
Рис. 3. Экспериментальная осредненная зависимость изменения числа n вспышек молнии в минуту от времени при использовании пяти ракет ?Облако¦ с ОДС.
Экспериментальные работы показали, что для подавления грозовой активности' облака средних размеров требуется порядка 5?6 подрывов в нем зарядов ОДС в составе ракеты ?Облако¦. Регистратор грозовой активности показывает, что при этом число вспышек молний в единицу времени снижается не менее, чем в 4?5 раз. На рис. 3 в качестве примера представлена экспериментальная осредненная зависимость изменения числа вспышек молний в минуту по времени при применении ракет ?Облако¦ с зарядами ОДС. Она показывает, что грозовая активность подавляется на период до 30?35 мин. (в ряде случаев до 55 мин.), после чего облако восстанавливает первоначальную величину частости молниевых разрядов в единицу времени.
Положительными сторонами данного метода являются также его безопасность для обслуживающего персонала (особенно по сравнению с использованием авиации), практическая возможность применения в любых условиях, например, в горных регионах, и относительная дешевизна.
Список литературы
1. Зимин Б. И. Регулирование развития грозовой активности конвективных облаков при воздействии льдообразующими аэрозолями. / Труды ЦАО. Вып. 136. М.: Гидрометеоиздат, 1978. С. 106.
2. Качурин Л. Г. Физические основы воздействия на атмосферные процессы. Л.; Гидрометиоиздат, 1973. 366 с.
3. Бонд Дж., Уотсон К., Уэлч Дж. Физическая теория газовой динамики. Пер. с анг. М.: Мир, 1968. 556 с.
4. Кузнецов Н. М. Термодинамические функции и ударные адиабаты воздуха при высоких температурах. М.: Машиностроение, 1965. 464 с.
5. Кулаков И.И., Рогов Н.К., Ильиничев А.И. Технология ?мягкого¦ взрыва для разрушения строительных конструкций. Конверсия в машиностроении. 1996. ¦1
6. Кулаков И.И., Ильиничев А.И. Новый метод сноса зданий и сооружений с помощью объемного взрыва. Конверсия в машиностроении. 1996. ¦6
7. Кулаков И.И., Волков Ю.В., Тараскин А.В. Применение объемного взрыва для рассеяния туманов. Конверсия в машиностроении. 1997. ¦2
8. Кулаков И.И., Рогов Н.К., Ильиничев А.И. Защита гидросооружений от воздействия льда с помощью подледных газовых зарядов. Конверсия в машиностроении. 1996. ¦6
9. Кулаков И.И., Волков Ю.В., Тараскин А.В. Применение объемного взрыва для снижения грозовой активности. Конверсия в машиностроении. 1998. ¦3