Основная динамическая сущность фазового угла Времени
Как уже отмечалось выше, скорость света (как кинематический инвариант) связывающий пространство и Время в единое 4-мерное топологической многообразие, остается фундаментальной постоянной. Расчеты приведенные в данной работе показывают, что частиц движущихся со скоростью большей, чем скорость света (v > с) не существует. Следовательно, класс частиц относящихся к тахионам, в физически реалистических условиях, не отождествляется. Таким образом, остаются две доминирующие группы частиц - это брадионы и люксоны [4], а тахионы представляют собой брадионы и люксоны, но которые проецируются из нашего Прошлого на наше Настоящее.
Важнейший вывод вытекающий из анализа таблицы 2 это то, что при фазовом угле Времени
Подытоживая выше сказанное, хочется отметить, что для фазового угла Времени изменяющегося от
Заключение.
В результате анализа поставленной в этой работе проблемы, мы пришли к не тривиальному решению. А именно, действие внутреннего механизма в процессе замедления Времени, указанном А.Эйнштейном, логично сводится к одному общему физическому явлению. Такой вывод возможно сделать только в том случае, если воспользоваться методикой базирующейся на предложении о существовании у Времени такой характеристики, как - Фазовый Угол Времени
Важно, что для нашей области видимой части Вселенной, где Космос заполнен материей, реальны и действительно работоспособны значения фазового угла Времени
Что же касается области изменения фазового угла Времени в границах от
Так же, хотелось бы сделать следующее предупреждение: не следует рассматривать предложенную в этой работе гипотезу, как альтернативную специальной и общей теориям относительности программу, направленную на подмену эйнштейновских фундаментальных теорий. Сформулированная гипотеза - есть прямое следствие, вытекающие из СТО и ОТО, и которое определенным образом расширяет наши представления об эффекте замедления Времени.
Списоклитературы
1. S.W. Hawking, G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, 1973.
2. К. Ленг, Астрофизические формулы (руководство для физиков и астрономов ), Часть 2, М., Мир, 1978 .
3. Физика микромира,- М.: Советская энциклопедия, 1980, с. 292.
4. Э. Реками , В кн.: Астрофизика, кванты и теория относительности , Пер. с итал./ Под ред. Ф.И. Федорова, - М.: Мир, 1982, с. 53.