Специализация "исследование операций", как было сказано, сначала была на кафедре вычислительной математики с 1962 г. Я хорошо помню один из разговоров Л.В. и тогдашнего декана, на который я был приглашен (я был еще аспирантом). Декан, не вполне представлявший чисто математический вес новой области, убеждал меня в дальнейшем целиком заняться математическими вопросами, связанными с идеями Л.В., на что сам Л.В., поддерживавший мою кандидатуру для кафедры, отвечал, что для меня с точки зрения "чистой математики" это маловато.
После длинных тягот в основном ненаучного характера, я все-таки был взят на факультет, но не на кафедру анализа, которую кончал, и где проходил аспирантуру, а на вычислительную кафедру, специально для ведения занятий по новой специализиции. В положении кафедры и самой специальности была действительно некоторая неясность, поскольку она не имела своей четко выраженной специфики (скажем, как кафедра алгебры, или геометрии, или даже вычислительной математики) и вынужденным образом должна была стать междисциплинарной и отчасти прикладной. Ее тематика имела пересечение с тематикой различных кафедр (уравнений - через вариационные задачи, анализа - через выпуклый и функциональный анализ, алгебры - через дискретную математику, вычислительной математики и, конечно, матобеспечения). Собственная же ее область не была достаточно обширной, чтобы стать предметом теоретической математической специализации. Это определило и сильные, и слабые стороны будущей кафедры и специальности.
Замечу в скобках, что сам я был и остаюсь противником разделения математических факультетов на кафедры вообще, - эта старонемецкая традиция не сохранилась к настоящему моменту ни в одной из ведущих математических стран. Сейчас (и давно) она только тормозит необходимые перемены в системе математического образования. Насколько я знаю, нет серьезных исследований того, насколько наше образование на мат-мехе эффективно, но боюсь, что столь долго не подвергающаяся никаким изменениям форма образования хорошей оказаться не может. Опять-таки из-за этого специализация и кафедра не привлекали на мат-мехе особенно сильных студентов.
Совершенно другое положение было в теоретической экономике, там новые идеи привлекли самые свежие и здоровые силы, и Л.В. в дальнейшем стал несомненным лидером и учителем целой плеяды наших экономистов. Не будет преувеличением сказать, что все современные экономисты страны прошли (непосредственно или через своих учителей) школу идей Л.В. Разумеется, это предмет особой и важной темы для исторического исследования. Мне сложно говорить о новосибирском и московском периодах педагогической и научной деятельности Л.В. - это совсем другая эпоха (и даже две эпохи), видимо, непохожие на ленинградский период.
4. Несколько личных воспоминаний
Личность Л.В., его качества педагога и ученого заслуживают отдельного разговора. Здесь я ограничусь несколькими замечаниями.
1. Мои первые встречи, разговоры и общение с ним поражали меня и моих друзей прежде всего тем, с какой скоростью он воспринимал сказанное, упреждая собеседника и мгновенно вычисляя, что возникало по ходу разговора. Позже я читал такое же о фон Неймане, который, кстати, переписывался с Л.В. до войны по тематике, связанной с полуупорядоченными пространствами. Cамые первые работы Л.В. (с Ливенсоном) по дескриптивной теории множеств, с которых началась его слава, поразили московских специалистов, долго занимавшихся этой темой, техническим умением и глубиной проникновения в суть. Поражала также его разносторонность и точное понимание существенного, о чем бы ни шла речь. Быстрота и глубина его математического мышления находились на границе возможностей (во всяком случае известных мне).
Помню обсуждение на ленинградском семинаре в Доме Ученых в 60-х гг. серии статей американцев по модной тогда теории автоматов. Л.В. в частности, комментировал статью У.Р.Эшби "Усилитель мыслительных способностей", в которой обосновывалась очевидная идея о необходимости ускорения мыслительной работы. Л.В.: "Конечно, скорость соображения бывает различной у разных людей, но она может отличаться по сравнению с обычным уровнем в три, ну в пять раз, но не в 1000 раз". Пожалуй, коэффициент Л.В., был много больше, чем 5.
2. В то же время лекции он читал в медленном, но весьма неравномерном темпе, очень живо реагируя на вопросы. Каждая лекция начиналась с сакраментального вопроса: "Имеются вопросы по предыдущей лекции?", произносимого раскатистым громким голосом. Но иногда во время лекции этот голос опускался почти до шопота. На семинарах он очень часто спал, но при этом каким-то чудом в нужных местах прерывал докладчика, забегая далеко вперед уже сказанного. Его комментарии всегда были полезны и поучительны.
3. Но доклады принципиального характера Л.В. проводил с блеском. Он был исключительно опытным полемистом, находя точные возражения по сути дела. Я хорошо помню ряд его выступлений, о которых упоминал выше. Жаль, что тогда не было видеозаписей.
4. Его отношение к математике, по моим наблюдениям, менялось. До войны и в первые послевоенные годы его принадлежность к небольшому числу лидеров функционального анализа (другие - И.М.Гельфанд, М.Г.Крейн) была бесспорной. Особенно ясно это стало после его знаменитой статьи "Функциональный анализ и прикладная математика" в "Успехах", за которую он получил очень важную для его дальнейшей устойчивости в смутные времена сталинскую премию. Его известная книга с Г.П.Акиловым подвела итоги деятельности ленинградской школы функционального анализа. Позже, перейдя к занятиям экономикой, он несколько отошел от математики, но он, на мой взгляд, прекрасно понимал, что этот уровень - пройден и пытался внедрить в Ленинграде новые направления. Я хорошо помню его интерес к теории распределений Шварца; я как-то в 1956 г. делал по его и Г.П.Акилова просьбе серию докладов на семинаре Фихтенгольца - Канторовича о различных определениях обобщенных функций, и одним из первых было определение Л.В.Канторовича в ДАНовской заметке 1934 года, - еще до работ Соболева и др.! Позже он неоднократно говорил мне о роли И.М.Гельфанда в математике и сожалел, что тот до сих пор не избран членом Академии.
Мне казалось, что Л.В. сожалел о том, что после 50-х гг. он фактически оставил математику, но его выбор между экономикой и математикой, на мой взгляд, был, видимо, предопределен.
5. Но Л.В. мог служить также отличным примером того, кого надо было бы называть "математиком-прикладником". Его чутье в прикладных вопросах и обширнейшие контакты с инженерами, военными, экономистами сделали его необычайно популярным среди тех, кто применял математику. Сам он говорил, что чувствует себя не только математиком, но и инженером. Успешные занятия вычислительной техникой, программированием, инженерными расчетами прекрасно иллюстрируют этот тезис.
6. В профессиональной среде он почти всегда был окружен всегда всеобщим восхищением и вниманием. Его появление на семинарах, докладах, если он был в форме, сразу же оживляло атмосферу, как говорят, броунизировало ее. С этим соглашались, по-моему, все - и доброжелатели, и недруги. В последние годы, уже отойдя от математики, в Москве он дружил с ведущими математиками следующего поколения -- В.И.Арнольдом, С.П.Новиковым и др. Я надеюсь, что они когда-нибудь напишут об их беседах с ним.
Заканчивая этот очерк, хочу заметить, что нам (моему поколению математиков, выросших в Ленинграде) и мне лично невероятно повезло и с учителями и с тем, что мы стали свидетелями и даже чуть-чуть участниками формирования новых научных направлений и были учениками их основателей. Здесь я выделяю Л.В. Роль Л.В.Канторовича еще не до конца понята и оценена. На первый взгляд, его теории были, как он сам говорил (но здесь следует сделать естественную поправку на внутреннюю и внешнюю цензуру), приспособлены к плановой экономике, и т.д. Но это лишь внешняя сторона дела.
Главное - учет скрытых параметров (рента), единый подход к ограничениям (труд - всего лишь одно из них) и все, что отсюда вытекает - делают его экономические приложения универсальными и необходимыми сейчас. Вообще, главный итог великого эксперимента Канторовича в том, что он подошел к экономическим проблемам вооруженный самыми современными для тех лет математическими средствами, и творчески применял их. Это не значит, что его выводы будут полностью работать и сегодня, но это, безусловно, значит, -- и в этом отношении Л.В. был, возможно, первым (фон Нейман не занимался экономикой столь глубоко, как Л.В.), -- что талант математика может в корне переустроить и преобразовать экономическую мысль.
К великому сожалению, Л.В. не дожил до 90-х, когда его опыт, чутье и авторитет могли бы быть использованы с куда большим эффектом, чем в советские времена. Не сомневаюсь, что он смог бы предостеречь реформаторов-экономистов, у которых теоретические (да и практические) навыки были на недостаточно высоком уровне (что и заставляло их прислушиваться к сомнительным советам) от серьезных ошибок. Увы, в нужный момент опытного экономиста такого масштаба, как Л.В., в стране не оказалось.