Смекни!
smekni.com

Антенный усилитель с подъёмом АЧХ (стр. 3 из 5)

К;

А;

Ом;

;

Ом;

А;

А.

Как видно из расчётов условие термостабильности выполняется.

3.4 Расчёт входного каскада по постоянному току

3.4.1 Выбор рабочей точки

При расчёте требуемого режима транзистора промежуточных и входного каскадов по постоянному току следует ориентироваться на соотношения, приведённые в пункте 3.3.1 с учётом того, что

заменяется на входное сопротивление последующего каскада. Но, при малосигнальном режиме, за основу можно брать типовой режим транзистора (обычно для маломощных ВЧ и СВЧ транзисторов
мА и
В). Поэтому координаты рабочей точки выберем следующие
мА,
В. Мощность, рассеиваемая на коллекторе
мВт.

3.4.2 Выбор транзистора

Выбор транзистора осуществляется в соответствии с требованиями, приведенными в пункте 3.3.2. Этим требованиям отвечает транзистор КТ371А. Его основные технические характеристики приведены ниже.

Электрические параметры:

граничная частота коэффициента передачи тока в схеме с ОЭ

ГГц;

Постоянная времени цепи обратной связи

нс;

Статический коэффициент передачи тока в схеме с ОЭ

;

Ёмкость коллекторного перехода при

В
пФ;

Индуктивность вывода базы

нГн;

Индуктивность вывода эмиттера

нГн.

Предельные эксплуатационные данные:

Постоянное напряжение коллектор-эмиттер

В;

Постоянный ток коллектора

мА;

Постоянная рассеиваемая мощность коллектора

Вт;

Температура перехода

К.

3.4.3 Расчёт эквивалентной схемы транзистора

Эквивалентная схема имеет тот же вид, что и схема представленная на рисунке 3.3. Расчёт её элементов производится по формулам, приведённым в пункте 3.3.3.

нГн;

пФ;

Ом

Ом;

А/В;

Ом;

пФ.

3.4.4 Расчёт цепи термостабилизации

Для входного каскада также выбрана эмиттерная термостабилизация, схема которой приведена на рисунке 3.7.

Рисунок 3.7

Метод расчёта схемы идентичен приведённому в пункте 3.3.4.3 с той лишь особенностью что присутствует, как видно из рисунка, сопротивление в цепи коллектора

. Это сопротивление является частью корректирующей цепи и расчёт описан в пункте 3.5.2.

Эта схема термостабильна при

В и
мА. Напряжение питания рассчитывается по формуле
В.

Рассчитывая по формулам 3.3.19–3.3.29 получим:

кОм;

кОм;

кОм;

кОм;

К;

К;

А;

кОм;

;

Ом;

мА;

мА.

Условие термостабильности выполняется.

3.4 Расчёт корректирующих цепей

3.4.1 Выходная корректирующая цепь

Расчёт всех КЦ производится в соответствии с методикой описанной в [4]. Схема выходной корректирующей цепи представлена на рисунке 3.8. Найдём

– выходное сопротивление транзистора нормированное относительно
и
.

(3.5.1)

.

Рисунок 3.8

Теперь по таблице приведённой в [4] найдём ближайшее к рассчитанному значение

и выберем соответствующие ему нормированные величины элементов КЦ
и
, а также
–коэффициент, определяющий величину ощущаемого сопротивления нагрузки
и модуль коэффициента отражения
.

Найдём истинные значения элементов по формулам:

; (3.5.2)

; (3.5.3)

. (3.5.4)

нГн;

пФ;

Ом.

Рассчитаем частотные искажения в области ВЧ, вносимые выходной цепью:

, (3.5.5)

,

или

дБ.

3.5.2 Расчёт межкаскадной КЦ

Схема МКЦ представлена на рисунке 3.9. Это корректирующая цепь четвёртого порядка, нормированные значения её элементов выбираются из таблицы, которую можно найти в [4], исходя из требуемой формы и неравномерности АЧХ. Нужно учесть, что элементы, приведённые в таблице, формируют АЧХ в диапазоне частот от 0 до

, а в данной работе каждая КЦ должна давать подъём 3дБ на октаву. Следовательно, чтобы обеспечить такой подъём нужно выбирать элементы, которые дают подъём 6дБ в диапазоне от 0 до
.

Рисунок 3.9

Нормированные значения элементов КЦ, приведённые ниже, выбраны для случая, когда неравномерность АЧХ цепи не превышает ±0.5дБ.

Эти значения рассчитаны для случая, когда ёмкость слева от КЦ равна 0, а справа – ¥. Произведём пересчёт значений по приведённым ниже формулам [4] с учётом того, что ёмкость слева равна выходной ёмкости транзистора VT1.