Наконец, брюссельская интерпретация ограничивает применимость чистых состояний (то есть точек в фазовом пространстве классической механики и волновых функций в квантовой механике) введением некоего нового принципа, который можно назвать "микроскопическим вторым началом термодинамики". При этом отвергается представление как о реальности волновой функции в старом смысле этого слова, так и о "классическом идеале" – в пользу новой концепции, в основе которой лежит необратимость времени.
3.2 Неунитарная эволюция и несводимое описание
Необратимость, выражаемая стрелой времени – свойство статистическое. Она не может быть введена на уровне отдельных траекторий (или волновых функций) и поэтому требует радиального отхода от ньютоновской механики или ортодоксальной квантовой механики, в основе которых лежат понятия траектории или отдельной волновой функции. Ещё Больцман понял, что необходим подход на основе ансамблей. Школа Пригожина реализует эту программу с необходимой математической строгостью.
Неустойчивость и хаос вынуждают отказаться от описания классической механики в терминах траекторий и перейти к описанию в терминах распределения вероятности. Примером может служить рассмотренное ранее отображение сдвига Бернулли. В разделе 1.1 был приведён явный вид оператора с дискретным временем, описывающего эволюцию плотности вероятности для сдвига Бернулли (применительно к отображениям подобный оператор называется оператором Перрона–Фробениуса). В статистической механике оператор эволюции имеет вид U(t) = e–iLt, а в квантовой механике U(t) = e–iHt. Два последних оператора унитарны, то есть сохраняют скалярное произведение, и в гильбертовом пространстве имеют собственные значения, по модулю равные 1 – то есть приводят к периодическим функциям от времени типа exp(–iEnt). В отличие от них оператор эволюции хаотических систем должен описывать приближение к равновесию и, следовательно, содержать время релаксации. Для этого требуются комплексные спектральные представления.
Оказалось, что для сдвига Бернулли в гильбертовом пространстве спектрального разложения отображения не существует. Собственные функции этого оператора не удовлетворяют условию квадратичной интегрируемости, поэтому вместо гильбертова пространства требуется перейти к так называемому обобщённому пространству, включающему наряду с квадратично интегрируемыми функциями, например, ещё и d-функции типа дираковской. Собственные значения для построенных в этом пространстве собственных функций оказываются напрямую связанными с временем Ляпунова в хаотической системе.
На языке распределений вероятности отдельная траектория для сдвига Бернулли представляется функцией rn=d(x–xn), сдвиг Бернулли преобразует её в rn+1=d(x–xn+1)= d(x–2xn) при xn<1/2 и в rn+1=d(x–xn+1)= d(x+1–2xn) при 1/2<x<1. Если при этом величина rnпостоянна, то rn+1 также будет постоянна, что соответствует равновесию и достигается при n®µ.
Рассмотрим задачу на собственные значения для оператора эволюции U. Нетрудно проверить, что U(x–1/2) = 1/2(x–1/2). Следовательно, (x–1/2) – собственная функция оператора U, соответствующая собственному значению 1/2. В отличие от оператора эволюции в квантовой механике, мы получили комплексную спектральную теорию (собственное значение соответствует k=i ln2). Полученное значение связано с показателем Ляпунова, который в точности равен 1/2=e–ln 2. Применение оператора U к функции x–1/2 приводит к затуханию. Итерируя действие оператора U, мы получаем последовательность (1/2)n, которая при n®µстремится к нулю.
Функция x–1/2 принадлежит семейству многочленов, называемых многочленами Бернулли:
B0(x) = 1;
B1(x) = x – 1/2;
B2(x) = x2 – x + 1/6;
B3(x) = x3 – 3/2 x2 + 1/2 x;
B4(x) = x4 – 2 x3 + x2 – 1/30;
. . .
На первый взгляд может показаться, что задача на собственные значения для сдвига Бернулли решена, но это не так. Рассмотрим теперь оператор U+, сопряжённый с оператором U (сопряжённый оператор определяется соотношением <Uf|g> = <f|U+g> ). Нетрудно показать, что он имеет вид:
Можно также показать, что оператор U+– изометрический, то есть сохраняет скалярное произведение (однако в отличие от унитарного изометрический оператор не допускает обратного, из чего следует, что сдвиг Бернулли – не обратимое отображение). Задача на собственные значения U+f(x)=lf(x) не имеет других решений в классе непрерывных функций, кроме постоянной. Таким образом, сдвиг Бернулли не имеет спектрального представления в гильбертовом пространстве. Однако U+ имеет собственные функции и собственные значения в обобщённых пространствах. Например:
U+[d(x–1)–d(x)]=1/2 [d(x–1)–d(x)],
следовательно, мы имеем собственную функцию оператора U+, которая принадлежит к классу обобщённых функций и имеет такое же собственное значение, какое первый многочлен Бернулли имеет для оператора U. Обозначим поэтому найденную функцию B(1)(x).
Существует целое семейство обобщенных функций B(n)(x), которые являются собственными функциями оператора U+ и соответствуют собственным значениям 1/2n. Эти функции не имеют конечной нормы, что вынуждает к переходу в обобщённое пространство. Их семейство, однако, обладает свойствами ортогональности и полноты.
Таким образом, как и в квантовой механике, мы можем разложить вероятность r(x) по биортонормированному семейству функций:
.Распространяя скалярное произведение на обобщённые функции, необходимо сделать некоторые существенные замечания. Основное свойствоd-функции состоит в том, что при интегрировании с обычной непрерывной функции она "вырезает" её значение в точке x=x0. Для корректности скалярного произведения <f|g>, где f – обобщённая функция, необходимо, чтобы g была подходящей функцией, обеспечивающей сходимость скалярного произведения. Она, очевидно, не должна принимать бесконечных значений – во всяком случае, в точке x=x0. Назовём такие функции пробными.
Мы можем определить действие оператора A на обобщённую функцию f с помощью соотношения <Af|g>=<f|A+g> – но такое соотношение вполне определено только при том условии, что A+g остаётся пробной функцией. Задача на собственные значения A|f> = l|f> также имеет смысл только в том случае, если пользоваться пробными функциями g такими, что <g|Af> = l<g|f>.
Возвращаясь к спектральному представлению эволюции при сдвиге Бернулли, делаем вывод: так как B(n)– обобщённые функции, r(x) должна быть пробной функцией, так как в противном случае ей бы соответствовала d-функция, для которой скалярное произведение с B(n)расходится.
Спектральные теории Пригожина применимы только для ансамблей траекторий – это фундаментальный результат. Для хаотических систем, а сдвиг Бернулли – простейший из примеров таких систем, вероятностное описание следует строить не в гильбертовом, а в обобщённом пространстве, и оно несводимо. В этом – принципиальное отличие брюссельского подхода от подхода на основе теории ансамблей Гиббса–Эйнштейна: их описание было сводимо, поскольку могло быть разложено на описания отдельных траекторий.
Мы подходим к важному вопросу: что означает действие оператора эволюции U(t) на обобщённую функцию? Это соотношение имеет вполне определённый смысл, если U+(t)g остаётся пробной функцией. Для хаотических систем это условие, как правило, не выполняется и при t>0, и при t<0. Пробные функции для прошлого отличаются от пробных функций для будущего. Этот факт приводит к нарушению симметрии во времени и лежит в основе решения парадокса времени, предлагаемого брюссельской школой.
Рассмотренное выше отображение пекаря также допускает спектральное представление в гильбертовом пространстве, однако собственные значения его оператора Перрона–Фробениуса не имеют при этом отношения к времени Ляпунова – таким образом, хаотические свойства остаются "за кадром". Оказывается всё-таки, что некоторые хаотические системы – и преобразование пекаря в частности – допускают дополнительные спектральные представления. Помимо спектрального представления оператора эволюции в гильбертовом пространстве можно построить новое представление в обобщённом гильбертовом пространстве, которое связывает эволюцию во времени с временем Ляпунова.
Может возникнуть вопрос – так какое же представление правильное? С математической точки зрения они оба вполне корректны. Однако комплексные представления в обобщённом пространстве позволяют продвинуться значительно дальше, так как включают в спектр оператора эволюции время Ляпунова, которое характеризует временной горизонт хаотических систем. Новые представления позволяют описывать приближение к равновесию, явно описывают нарушение симметрии во времени и включают необратимость на фундаментальном уровне описания.