1. Создание специальной теории относительности (СТО)
1.1.Фундаментальные противоречия в основаниях классической механики
После создания теории электромагнитного поля и экспериментального доказательства его реальности перед физикой встала задача выяснить, распространяется ли принцип относительности движения (сформулированный в свое время еще Галилеем) на явления, присущие электромагнитному полю. Принцип относительности Галилея был справедлив для механических явлений. Во всех инерциальных системах (т.е. движущихся прямолинейно и равномерно друг по отношению в другу) применимы одно и те же законы механики. Но справедлив ли этот принцип, установленный для механических движений материальных объектов, для немеханических явлений, особенно тех, которые представлены полевой формой материи, в частности электромагнитных явлений? Корни теории относительности лежат именно в этом комплексе проблем физики конца ХIХ века.
Ответы на эти вопросы лежали в области изучения закономерностей взаимосвязи движущихся тел с эфиром, но не как с механической средой, а как со средой, являющейся носителем электромагнитных колебаний. Отдаленные истоки такого рода исследований складывались еще в ХVIII веке в оптике движущихся тел. Впервые вопрос о влиянии движения источников света и приемников, регистрирующих световые сигналы, на оптические явления возник в связи с открытием аберрации света английским астрономом Брадлеем в 1728 г.
Вопрос о влиянии движения источников и приемников света на оптические явления для волновой теории света был значительно более сложным, чем для теории, основанной на представлении о корпускулярной природе света. Решение этого вопроса требовало введения ряда допущений. Эти гипотетические допущения касались явлений, которые было очень сложно выяснить в опыте: как взаимодействуют весомые тела и эфир (полагали, что эфир проникает в тела); отличается ли эфир внутри тел от эфира, находящегося вне их, и если отличается, то чем; как ведет себя внутри эфир тел при их движении, и т. д. Возрождавший волновую теорию света в начале XIX в. Т. Юнг, касаясь вопросов оптики движущихся тел, уже обратил на это внимание. Он отметил, что явление аберрации света может быть объяснено волновой теорией света, если предположить, что эфир повсюду, в том числе и внутри движущихся тел, остается неподвижным. В этом случае явление аберрации объясняется, как и в корпускулярной теории света.
В 1846 г. английский ученый Стокс разработал новую теорию аберрации на основе аналогий с гидродинамикой. Он исходил из предположения, что Земля при своем движении полностью увлекает окружающий ее эфир, так что скорость эфира на поверхности Земли в точности равна ее скорости. Но последующие слои эфира движутся все медленнее и медленнее, и это обстоятельство и вызывает искривление волнового фронта, что и воспринимается как аберрация. Из этой теории следует, что в любых оптических опытах, проведенных на Земле, не может быть обнаружена скорость ее движения.
Существовала и третья точка зрения. Она принадлежала Френелю, которому пришла очень интересная идея о частичном увлечении эфира движущимися телами. Френель показал также, что коэффициент увлечения имеет порядок ( v / c ) І , а значит опытная проверка этой идеи требует очень точного эксперимента.
Сравнивая свою теорию с теорией Френеля, Стокс указывал, что эти теории хотя и основываются на противоположных гипотезах, но практически приводят к одним и тем же результатам.
Принципиальная сторона вопроса сводилась в сущности к двум возможным гипотетическим допущениям. Первое допущение состояло в том, что эфир полностью увлекается движущейся системой.
Целый ряд опытов, которые были поставлены еще в ХIХ веке, показал, что скорость света всегда одинакова во всех системах координат, независимо от того, движется ли излучающий источник или нет, и независимо от того, как он движется. Таким образом, гипотеза о том, что эфир полностью увлекается движущейся системой позволяла придерживаться принципа относительности, но тем не менее противоречила опыту.
Второе допущение прямо противоположно первому: движущаяся система проходит через эфир, не захватывая его. Это предположение по сути отождествляет эфир с абсолютной системой отсчета и приводит к отказу от принципа относительности Галилея, ведь в системе координат, связанной с эфирным морем, законы природы отличаются от законов во всех других системах.
Таким образом, только в одной системе координат, которая связана с неподвижным эфирным морем, скорость света была бы одинакова во всех направлениях. В любой другой системе, движущейся относительно эфирного миря, она зависела бы от направления, в котором производилось измерение. А это значит, что для того, чтобы проверить эту вторую гипотезу, необходимо измерить скорость света в двух противоположных направлениях. Для этого воспользовались движением Земли вокруг Солнца: скорость света в направлении движения Земли отличалась бы от скорости света в противоположном направлении.
Очевидно, что если Земля не увлекает при своем движении окружающий эфир, то в первом случае эта скорость равна с1 = с - n = c(1 - n /c), а во втором случае с2 = c(1 + n /c), где n - скорость Земли. Таким образом, разница в скорости света в первом и втором случаях первого порядка малости относительно n /c. Однако для проведения такого опыта нужно уметь измерять время, необходимое для прохождения светом известного расстояния в определенном направлении, например в направлении движения Земли. А эта задача экспериментально неразрешима. Поэтому во всех проводимых на Земле опытах по определению скорости света эта скорость определяется по времени, которое требуется для прохождения светом расстояния в прямом и обратном направлениях. Следовательно, для того чтобы определить влияние движения Земли на скорость света, остается возможность сравнить время прохождения светом определенного расстояния L туда и обратно один раз вдоль движения Земли, а другой раз, в направлении, перпендикулярном этому движению. Но в этом случае разница во времени в первом и втором случаях является величиной уже второго порядка малости относительно n /с, т. е. величиной порядка n 2/с2.
Таким образом, хотя принципиально с помощью эксперимента и можно решить вопрос о поведении эфира при движении Земли, тем не менее вследствие малости величины n 2/с2" 10-8, ожидаемый эффект должен быть чрезвычайно мал. И тем не менее такой эксперимент был в 1887 г. осуществлен Майкельсоном и Морли. Результаты этого эксперимента достоверно свидетельствовали, что скорость света не испытывает влияния движения Земли.
Это поставило второе допущение в исключительно затруднительное положение. Для того, чтобы спасти его Фитцджеральд и независимо от него Лоренц высказали в 1892 г. оригинальную гипотезу. Суть ее состоит в том, что отрицательный результат опыта Майкельсона - Морли может быть объяснен тем, что каждое движущееся в эфире тело сокращает свои размеры в направлении своего движения относительно эфира. Согласно этой гипотезе, размеры тел при движении в эфире уменьшаются в направлении движения в 1: (1-n 2/с2)1/2 раз. Эта гипотеза совместно с гипотезой неувлекаемого, всюду неподвижного эфира чисто формально объясняла отрицательный результат опыта Майкельсона. Но никаких разумных теоретических соображений о причинах изменения размеров тел она не выдвигала. Более того, гипотеза Фитцжеральда - Лоренца предполагает, что вообще не существует никаких (ни эмпирических, ни теоретических) средств, позволявших бы решить вопрос о том, движется ли тело относительно эфира или покоится.
Таким образом, к рубежу ХIХ-ХХ веков развитие физики привело к осознанию противоречий и несовместимости трех принципиальных оснований классической механики:
1. Скорость света в пустом пространстве всегда постоянна, независимо от движения источника или приемника света.
2. В двух системах координат, движущихся прямолинейно и равномерно друг относительно друга, все законы природы строго одинаковы, и нет никакого средства обнаружить абсолютное прямолинейное и равномерное движение (принцип относительности).
3. Координаты и скорости преобразовываются от одной инерциальной системы к другой согласно классическим преобразованиям Галилея.
Было ясно, что эти три положения не могут быть логически объединены друг с другом, поскольку они несовместимы. Долгое время все усилия многих физиков были направлены на то, чтобы попытаться каким-либо образом изменить первые два из этих трех положений, оставив неизменным третий как само собой разумеющийся. С другой стороны, немалые усилия были потрачены на то, чтобы опытным путем, постановкой множества экспериментов доказать верность, истинность первых двух положений. В конце концов появилась даже идея замены преобразований Галилея, но она выступила лишь в виде гипотезы a d h o c .
Французский математик и физик Анри Пуанкаре (1854 - 1912) обратился к проблемам, рассмотренным Лоренцем. В отличие от последнего, Пуанкаре сразу исходил из принципа относительности, который он распространил на оптические и любые явления природы. Пуанкаре ближе всего подходил к основным представлениям теории относительности, а в разработке математического аппарата он был даже впереди Эйнштейна. Но Пуанкаре так и не решился на полный разрыв с классическими принципами и представлениями, хотя и был близок к этому.
Внутренней логикой своего развития физика подводилась к необходимости найти нестандартный новый путь в разрешении фундаментальных противоречий в ее принципиальных основаниях. Этот путь и был найден великим физиком ХХ в. А. Эйнштейном (1879 - 1955) .
1.2. Создание А. Эйнштейном специальной теории относительности (СТО)
В сентябре 1905 г. в немецком журнале "Аппа1еп der Physik" появилась работа Эйнштейна "К электродинамике движущихся тел". Эйнштейн сформулировал основные положения специальной теории относительности, которая объясняла и отрицательный результат опыта Майкельсона - Морли, и смысл преобразований Лоренца, и, кроме того, содержала новый взгляд на пространство и время.