1. Смысл и цели научной деятельности.
Вернер Гейзенберг (1901-1976) широко известен в мире как физик-теоретик, как один из тех ученых, который внес решающий вклад в построение квантовой механики - физической теории 20 века, радикально изменившей наши представления о микромире - мире молекул, атомов, элементарных частиц. Он разработал матричный вариант квантовой механики. Ему принадлежит честь открытия важнейшей формулы в науке 20 века - соотношения неопределенностей. Но теоретические интересы Гейзенберга и его творческая активность выходили далеко за пределы специально научной деятельности. Все те, кто его знал лично, подчеркивают его непреходящий интерес к философской мысли и ее истории, его внимание к проблемам художественного творчества, его серьезную озабоченность социальными событиями времени. Ученик и близкий друг Гейзенберга Карл Вейцзеккер писал, что он был, прежде всего, внутренне активной личностью с широким кругом интеллектуальных интересов и только потом выдающимся ученым.
В чем же Гейзенберг видит смысл и цели научной деятельности? С помощью науки человек определяет и строит свои отношения с окружающим миром и находит тем самым приемлемые формы жизни в этом мире. Если естествознание открывает нам смысловое единство природы, то искусство, замечает Гейзенберг, побуждает нас к прояснению смысла нашего существования. Как наука, так и искусство ставят человека перед невероятным многообразием явлений. Наука стремится понять все существующее, в том числе и жизнь, с единой точки зрения. В искусстве можно наблюдать стремление найти такое миропонимание, которое было бы общим для всех людей на Земле.
В последние десятилетия замечательные достижения физики элементарных частиц порождают в умах ученых тревожные сомнения в перспективах развития физики вообще. Был поставлен вопрос: а не закончится ли в самое ближайшее время физика как наука? В самом деле - все природные вещества и все излучение состоят из элементарных частиц. Создается впечатление, что остается только описать и исследовать определяющие свойства частиц и найти общий закон их поведения. Если это будет сделано, то станут известны контуры всех физических процессов. Прикладная физика и разработка технических применений могут еще продолжаться, но изучение фундаментальных явлений было бы в этом случае закончено.
Исследуя вопрос о возможном конце физической науки, Гейзенберг справедливо обращается к историческому опыту развития науки. Этот опыт показывает, что подобные идеи уже выдвигались в истории физики, но каждый раз они отвергались самим ходом развития науки.
Конечно, в истории познания природы строились такие теории, которые можно назвать внутренне замкнутыми и в этом смысле окончательно завершенными.
В книге “Физика и философия” Гейзенбергом констатируются четыре существующие в современной физической науке “замкнутые системы” известным образом связанных понятий, определений и аксиом, каждая из которых описывает определенную область явлений природы. Первая система – механика Ньютона, включающая статику, акустику, аэродинамику, небесную механику и т. д. Вторая система сформировалась в связи с теорией теплоты. Третья система выведена из электрических и магнитных явлений. Четвертая система – квантовая теория, охватывающая квантовую механику, теорию атомных спектров, химию, теорию проводимости и т. д. Кроме того, отмечается возможность существования пятой замкнутой системы понятий, которая будет построена в связи с созданием теории элементарных частиц.
Характеризуя типический черты замкнутых систем, Гейзенберг указывает, что каждой системе понятий отвечает математическое представление и что система должна быть пригодной для описания широкой области опыта, причем границы применимости понятий должны определяться эмпирически. Несомненно, что эти введенные Гейзенбергом “замкнутые системы” понятий соответствуют тому, что формы движения материи, будучи связаны переходами, качественно отличаются друг от друга. Из соображений Гейзенберга о соотношении между “системами понятий” особый интерес представляет следующее высказывание: “ Первая система содержится в третьей и четвертой как их предельный случай, и вместе с тем первая и отчасти третья необходимы для четвертой как априорное основание для описания экспериментов” (3, с. 75). Идея этого высказывания проходит в различных аспектах через все содержание книги “Физика и философия”.
Изучая историю науки, замечает Гейзенберг, мы не должны ограничиваться историей открытий и наблюдений, но обязаны включать в рассмотрение историю развития понятий. Такие понятия классической механики как масса, сила, скорость, место, время, представляют собой отвлечение от многих реальных особенностей изучаемых процессов. Содержание этих и других понятий теории строго определено и в силу этого теоретические утверждения, в которые входят эти понятия, оказываются верными вне зависимости от указанных особенностей, а значит верными на все времена и в любых самых отдаленных звездных системах. В рамках своих понятий механика Ньютона окончательна и завершена.
Претензии на всеобщность продолжают действовать, но это не означает их реализации в том смысле, что все природные явления могут быть объяснены на основе механики. И, тем не менее, большая сфера опыта вполне определенно описывается в понятиях механики и всегда может быть представлена этими понятиями. Гейзенберг замечает в этой связи, что общее и особенное сосуществуют и в общей структуре знания и составляют существенную и необходимую особенность его развития.
Теория относительности и квантовая механика - также замкнутые теории, опирающиеся на своеобразные идеализации. Для построения подобной замкнутой теории при исследовании элементарных частиц необходимо искать или строить более глубокую идеализацию, которая в предельном случае приводила бы к уже известным физическим теориям. Допустим, что такая идеализация найдена и построена замкнутая теория элементарных частиц. Можно ли в таком случае говорить, что физика пришла к своему завершению?
При формулировке всеобъемлющих законов используется процедура идеализации, ведущая к выработке исходных понятий теории. Гейзенберг обращает особое внимание на процедуру идеализации и показывает, что любая идеализация охватывает ограниченный круг явлений. Все биологические объекты состоят из элементарных частиц. Однако понятие жизни не содержится в тех или иных идеализациях, которые лежат в основании физических теорий. Необходимо осознать, что наука не однородна, способы образования понятий существенно несходны. Но эти способы подвижны и не закреплены за какой-либо отдельной наукой. Такая подвижность, различие в способах формирования понятий требуют исследований в пограничных сферах - в области математики, теории информации, философии. Эти области дают нам средства объединения и связи различных научных дисциплин. Дальнейшее развитие науки, ее судьба зависит от того, насколько успешно будут проходить процессы объединения, ведущие к преодолению исторически сложившихся границ.
В этом исторически необходимом процессе преодоления разобщенности между науками особая роль принадлежит философскому мышлению. Задача состоит в том, чтобы найти действительно плодотворные подходы к решению вопроса, опираясь на необходимую в данной проблеме философскую мысль. Обращаясь к трудностям в развитии науки, Гейзенберг замечает, что, к сожалению, приходится наблюдать множество бесплодных усилий в попытках преодолеть эти трудности. Безрезультатность такого рода исследований обусловлена, по его мнению, нежеланием многих ученых обращаться к философскому мышлению. Но поскольку рождение подлинно новых научных достижений невозможно без взаимодействия с философскими идеями, исследователи-специалисты невольно исходят из дурной философии и под влиянием ее предрассудков приходят к путанице в самой постановке вопросов. “Дурная философия, - говорит Гейзенберг с необычной для его стиля резкостью, - исподволь губит хорошую физику” (2, с. 172).
2. Критика материализма как основы научного познания.
В книге “Философские проблемы атомной физики” Гейзенберг неоднократно возвращается к вопросу - что дало развитие современной физики для понимания коренных принципов научного знания? Как подчеркивает Гейзенберг, классическая физика строилась на следующем основном положении: существуют объективные события, происходящие во времени и пространстве и не зависящие от наблюдателя и его измерений. Познание этих объективных событий, совершающихся в реальных пространстве и времени, и составляет сущность науки. В целом эта характеристика классической физики правильна. Действительно, материалистическая теория познания стихийно принимается всем естествознанием, в том числе и классической физикой.
Однако Гейзенберг утверждает, что положение изменилось с возникновением атомной физики и в особенности квантовой механики. Эти новые физические теории привели якобы к созданию совершенно “нового способа мышления”, неизбежным следствием которого является отказ от признания объективности пространства и времени, отказ от принципа причинности. Гейзенберг ставит вопрос – должен ли ученый раз и навсегда отказаться от мысли об объективности событий во времени и пространстве или же этот отказ можно рассматривать как некий “переходящий кризис”, от которого наука в дальнейшем избавится? На этот вопрос он отвечает с полной решительностью: такой отказ должен быть окончательным; никогда и никакие эксперименты уже не вернут науку на путь признания объективности явлений, пространства и времени. Стремление понимать явления природы как объективные, он сравнивает с донаучными попытками людей, считавших Землю плоским диском ограниченного размера, найти “край мира”. Как нет “края мира”, так будто бы и нет объективных явлений, независящих от наблюдателя! “…надежда, что новые эксперименты наведут нас на след объективных событий во времени и пространстве, была бы не более основательной, - пишет Гейзенберг, - чем надежда обнаружить “край мира” где-нибудь в районах Антарктики” (1, с10). Так, например, по Гейзенбергу, атомы, изучаемые современной физикой, нельзя рассматривать как реальные объекты, находящиеся в пространстве и времени. Гейзенберг утверждает, что, по существу, они являются не материальными частицами, а только символами, введение которых придает законам природы особенно простую форму. “Атомное учение современной физики, таким образом, существенно отличается от античной атомистики тем, что оно не допускает больше какой-либо интерпретации в духе наивного материалистического мировоззрения” (1, с. 49-50).