A2
Q
A1D0
D1Рисунок 3 – Логическая схема мультиплексора.
Произведём выбор микросхемы мультиплексора с числом информационных входов D не менее заданного числа n = 5, используя “Приложения методических заданий к курсовому проекту”.Выбираем микросхему К155КП7
Рисунок 4 – Микросхема мультиплексора К155КП7.
Вычертим полную схему комутатора на микросхеме К155КП7
счётчика
Рисунок 5 - Принципиальная схема комутатора.
2.2 Выбор микросхемы преобразователя У2 двоично-десятичного кода в код цифрового индикатора
Для преобразования двоично-десятичного кода в код семисегментного индикатора применяем микросхему дешифратора К514ИД1
Рисунок 6 - Микросхема преобразователя К514ИД1.
Приведём таблицу истинности преобразователя.
Таблица 2 - Таблица истинности преобразователя.
Цифра | Двоичный код8421 | Состояние элементов (A,B,C,D,E,F,G) и значение управляющих сигналов (У1…У7) | |||||||||
X4 | X3 | X2 | X1 | A | B | C | D | E | F | G | |
У1 | У2 | У3 | У4 | У5 | У6 | У7 | |||||
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
2 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
3 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
4 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |
5 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
6 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
7 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 |
8 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
9 | 1 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 |
2.3 Подключение семисегментных индикаторов.
Сигналом с выходов A – G преобразователя У2, управляющие свечением сегментов индикатора, подаются параллельно на входы индикаторов А – Q, т.е. выход А преобразователя подключается ко входу А каждого индикатора и т.д. В качестве индикатора используем АЛС324
Схема подключения семисегментных индикаторов (АЛС).
2.4 Выбор микросхемы двоичного счётчика.
Двоичный счётчик У3 подсчитывает тактовые импульсы генератора. Число индицируемых цифр представлено количеством индикаторов в схеме n=5 и определяет коэффицент пересчёта чётчика N. Кроме того, число разрядов счётчика равно числу адресных входов мультиплексоров.
Cоставим таблицу и вычертим диаграмму состояний счётчика с N = n = 5
Таблица3 - Таблица состояния счётчика.
Входной импульс | Двоичный код на выходах. | ||
4 | 2 | 1 | |
012345 | 000010 | 001100 | 010100 |
1 2 3 4 5
0 | 1 | 0 | 1 | 0 0 | |||||||||||
0 0 | 1 1 | 0 0 |
Рисунок 8 - Диограмма состояний счетчика.
Выберем микросхему двоичного счётчика К155ИЕ5.
Рисунок 9 - Микросхема двоичного счётчика К155ИЕ5.
Для обеспечения N=5 необходимо, чтобы при появлении на выходах двоичного кода 0101(2) = 5(10) все триггеры счётчика обратились в “0”. Для этого необходимо ввести цепи обратной связи с выходов счётчика, соответствующих N=5, в данном случае подать выход 4 на схему сброса.
2.5 Синтез дешифратора У4.
Дешифратор У4 в разрабатываемой схеме формирует номер (адрес) подключаемого индикатора. Сигнал с выхода дешифратора является упровляющим для индикатора, поэтому подключение осуществляется ко входу S.Составим таблицу истиности дешифратора с учётом заданного n = 5
Таблица 4 - Таблица истинности дешифратора.
Выходы | NВых. | ||
Х3 | Х2 | Х1 | |
00001 | 00110 | 01010 | 01234 |
Запишем логические функции выходов через операцию И, а также через операцию И-НЕ.
У0=Х3 × Х2 × Х×1 У0= Х3 × Х2 × Х×1 У1=Х3× Х2 × Х1 У1= Х3 × Х2 × Х×1