Чтобы понять природу энергетических барьеров, рассмотрим реакцию образования молекулы водорода из атомов, написав ее в обычном и графическом вариантах:
Н + Н = Н2 + 104 ккал.
В левой части равенств изображены взаимодействующие между собой атомы, а в правой образовавшаяся молекула водорода и теплота реакции или “энергия” образования молекулы. При взаимодействии атомов их фотонные оболочки взаимно проникают друг в друга под действием гравитационного притяжения ядер или межъядерных сил, что одно и то же, как это изображено на рисунке. В результате в заштрихованном горизонтальными линиями объеме концентрация фотонов будет вдвое превышать норму и поэтому половина их, заштрихованная вертикальными линиями, удаляется в виде свободной теплоты и “исчезает” (рассеивается) под действием разрывного напряжения фотонной материи. Эта теплота эквивалентна энергетическому барьеру устойчивости молекулы или механической жесткости ее структуры.
Иными словами, потеряв значительную часть своих фотонов, атомы не могут удалиться друг от друга вследствие наличия общих фотонов. Именно поэтому молекула обладает прочностью и не может самопроизвольно распасться на атомы. Но если ее нагреть, тогда атомы поглотят теплоту в количестве, равном 104 килокалориям, объем атомов увеличится до естественного состояния, вследствие чего сильно уменьшится их межъядерное притяжение и молекула просто перестанет существовать, распавшись на атомы [5]. Этот принцип взаимодействия частиц и образования структур действует на любом уровне усложнения материи. Например, если в левую часть уравнения реакции вместо окружностей подставить электрон и позитрон, то в правой части получим фотон и нейтринную материю, как энергию образования фотона:
e- + e+ = ф0 + νэ ,
где e- , e+ , ф0 и νэ – электрон, позитрон, фотон и нейтринная материя, заполняющая оболочки электронов. Эта материя тоже разрежена под действием вращения Вселенной. Очевидно, что если вернуть ее в фотон, то он распадется на электроны.
Если в левую часть уравнения подставить два нуклона и два протона, то в правой части равенства окажутся ядро атома гелия и 0.0302 атомной массы материи, являющейся “энергией” образования его ядра, которая входила в структуру оболочек нуклонов:
2N + 2P = He 4 + 0.0302 а. е. м.
Где N, P, He 4 и 0.0302 а. е. м. – нейтрон, протон, ядро гелия и энергия его образования в атомных единицах массы. Эту материю называют “дефектом массы”. Очевидно, что вне нуклонов она находится в состоянии сильного разрывного напряжения под действием центробежной силы вращения галактики. Идентификация ее частиц представляет одну из приоритетных задач экспериментальной физики, так как она является не только причиной устойчивости ядер гелия и ядер других атомов, но и нуклонных ядер звезд. Она помогла бы разгадать механизм синтеза атомов, например, на Солнце. Серьезным претендентом на роль элементарных частиц материи “дефекта массы” являются γ – частицы, которые далее использованы как более привычный термин.
Нуклонное ядро Солнца окружено твердой коркой радиусом примерно в 36 тысяч километров [6]. Синтез атомов происходит за счет разрушения его поверхности вследствие поглощения γ – частиц из галактического потока, пронизывающего звездный диск галактики от ее центра вращения к периферии. Процесс заполнения оболочек образующихся атомов фотонами сопровождается поглощением огромного количества теплоты. Она проникает сквозь тысячи километров толщи твердого вещества окружающей ядро и поэтому на его поверхности возникает острый ее дефицит или сильное разрежение фотонной материи. Это означает, что поверхность ядра сильно охлаждена. То есть синтез атомов на Солнце, в том числе и атомов гелия, происходит при низкой температуре, хотя и трудно сказать при какой именно. Концентрация теплоты, выраженная, например, в ккал/см 3, является эквивалентом температуры. В том смысле что, чем выше температура, тем выше концентрация. Нуклонные ядра не содержат фотонов, а, следовательно, не поглощают теплоты. И если в ядре нет фотонов, то, очевидно, оно должно быть холодным. Кроме того, разрывное напряжение фотонной материи является причиной низкой температуры межзвездной среды, равной – 270 0С, и оно действует на уровне ядер звезд, что тоже свидетельствует об их низкой температуре.
Очевидно, что и синтез ядер гелия при взрыве водородной бомбы связан не с температурой, а со “вспышкой плотности” γ – излучения и с уплотняющим действием взрывной волны. Если еще раз вернуться к реакции синтеза ядер гелия из нуклонов, то в правой части уравнения мы не увидим теплоты. В качестве энергии образования здесь выступает материя γ – частиц, полезность которой, кроме поражающего фактора, маловероятна. То есть конечным результатом программы создания управляемого термоядерного синтеза будет энергозатратный синтез гелия и γ – излучения. Иными словами, пытаться получить огромное количество энергии с помощью термоядерного синтеза гелия является несбыточной мечтой ученых прошлого и настоящего столетий. Поэтому прекращение работ по этой тематике является единственно правильным решением проблемы. Тем не менее, синтезировать атомы гелия из протонов и нейтронов можно и для этого имеются веские основания, только в этом нет никакого смысла [7].
А теперь давайте посмотрим, что в действительности происходит при ядерном взрыве. Этот процесс можно условно разделить на две стадии: на стадию распада ядер металлического плутония на атомы осколочных элементов и стадию нарастания давления образующихся газов, заканчивающуюся взрывом. На первой стадии, по-видимому, образуются ядра в основном атомов легких элементов водорода и гелия и в меньшей степени ядра более тяжелых атомов, то есть так, как это происходит на Солнце и в звездах. Продукты распада создают колоссальный дефицит фотонной материи, необходимой для заполнения оболочек образующихся атомов, то есть процесс на этой стадии сопровождается понижением температуры, и поглощением большого объема фотонной материи. При подземном атомном взрыве это сопровождается уменьшением объема молекул воздуха в приземном слое и его движением к земле. Этот эффект хорошо заметен, как резкое “оседание” воздуха, который часто снимают кинооператоры. Поглощение фотонов приводит к столь же быстрому увеличению давления образующихся газов, что и является причиной взрыва бомбы.
Распад плутония одновременно сопровождается сильным поглощением “энергии” образования нуклонной структуры ядер, то есть γ – частиц из галактического потока, что и является причиной вспышки γ – излучения при взрыве плутониевого заряда. Разрежение материи “дефекта массы” или ее дефицит отнимает γ – частицы у ядер атомов дейтерида лития, вследствие чего их объем уменьшается, а силы межъядерного притяжения увеличиваются. Ударная волна дополнительно уплотняет ядра, и дейтерид превращается в ядра гелия. Если, конечно, этот процесс вообще имеет место при взрыве, а не является неверным умозрительным предположением, вроде синтеза гелия из водорода якобы протекающего на Солнце.
Разрушительная сила атомного взрыва и артиллерийского снаряда связана в обоих случаях с возрастанием давления газов и зависит только от скорости протекания реакций. Очевидно, что скорость распада металлического плутония многократно превышает скорость распада структуры тротила в оболочке снаряда. А высокая температура светового потока – это “энергия” образования продуктов взрыва. То есть всего лишь теплота химической реакции. Плотность элементарных частиц в световом потоке атомного взрыва настолько высока, что любые химические соединения или гидрид лития мгновенно распадаются на атомы газообразного водорода и атомы лития вследствие поглощения фотонов. То есть происходит дополнительный взрыв, который и является причиной увеличения мощности термоядерной бомбы. Однако вернемся еще раз к реакции образования ядер гелия из нейтронов и протонов и увидим, что в левой части уравнения находятся 4 объема водорода, а в правой только один. Это означает, что при замене дейтерида лития на его гидрид, эффект взрыва возрастет примерно в 4 раза. Это означает, что можно уменьшить во столько же раз массу термоядерной бомбы, не снижая ее разрушительной мощи. Это можно использовать и для увеличения мощности стратегических ракет различного базирования. Однако следует знать, что при использовании гидрида лития сильно понизится плотность γ – излучения.
Список литературы
Трофимов Г. В. Кому нужна такая наука? www.sciteclibrary.ru/rus/catalog/pages/7681.html
Трофимов Г. В. Строение атома с позиции корпускулярного представления о фотонах. // SENTENTIAE. Сер. “Фiлософiя i коcмологiя”. Спецвiпуск № 3. – Д.: ДНУ, 2004. С. 76 - 84.
Трофимов Г. В. Строение атома с позиции корпускулярного представления о фотонах: www.sciteclibrary.ru/rus/catalog/pages/7622.html
Трофимов Г. В. А существует ли атмосферное давление? www.sciteclibrary.ru/rus/catalog/pages/7645.html
Трофимов Г. В. Гравитация и энергетика атома. www.sciteclibrary.ru/rus/catalog/pages/7762.html
Трофимов Г. В. Природа солнечных пятен. www.sciteclibrary.ru/rus/catalog/pages/7739.html
Балакирев В. Ф. Взаимопревращения химических элементов. Екатиринбург. 2003 г.