Смекни!
smekni.com

Явления - как они есть (стр. 7 из 12)

Что формирует силу, энергию?

Каков механизм “гравитационных” взаимодействий?

Какая сила при плотности атома в 1,57е+14 г/см.3, удерживает атом от распада?

Какие силы удерживают атомы на расстоянии друг от друга?

Где и в качестве чего существует "скрытая масса" Вселенной?

На эти вопросы уже даны ответы выше. Физическая модель Природы, соответствующая действительным процессам, с единых физических и философских позиций всегда даст трактовку, соответствующую строгой логике, любому процессу, протекающему во Вселенной. Только такая физическая модель и может быть критерием истинности представлений, ее составляющих.

Вот еще некоторые процессы, которым предлагаемая логика дает логичные и ясные объяснения, не нарушая единых философских и физических принципов:

Почему формула “Всемирного Закона Тяготения”, несмотря на то, что процесса тяготения масс друг к другу не существует, дает правильные количественные результаты?Так как за единицу массы людьми было принято такое количество магнитонов, площадь сечения которых равна единице площади, то массы объектов и площади сечения магнитонов, составляющие объект, выражаются одним и тем же числом. По причине чего и формула Ньютона, содержащая в себе массы объектов, которые ни как не влияют на движущую их силу, дают при расчетах правильные количественные результаты. То есть, по логике в формуле Ньютона фигурируют массы вследствие непонимания сути происходящего процесса. Должны фигурировать именно площади сечения корпускул, выражающиеся тем же числом, что и массы потому, что именно площади сечения магнитонов экранируют собой соседний объект от достижения их эфиронами, движущимися к соседнему объекту из области, расположенной за данным объектом. Вследствие этого экранирования эфироны и наносят соседнему объекту меньшее количество ударов со стороны данного объекта, чем со стороны свободного пространства. Вследствие чего соседние объекты под действием больших сил со стороны свободного пространства и сближаются друг с другом.

Почему опыты Майкельсона не обнаружили межзвездной среды? Майкельсон пытался обнаружить сопротивление межзвездной среды движению Земли. Но Земля не движется в межзвездной среде. Межзвездная среда движется в Землю. В планету поступает межзвездной среды со стороны соседних объектов несколько меньше, чем со стороны свободного пространства, что и измеряется приборами. Не замечать движение среды в планету более чем странно. Именно движение этой среды принуждает к падению объектов на Землю, прижимает нас к планете, что каждый чувствует без каких-либо приборов. В Солнце, как в объект большей массы, движется поток межзвездной среды большей мощности. Земля вместе со своим центростремительным потоком движется в центростремительном потоке Солнца, который своим давлением на Землю и принуждает ее все время поворачивать, принуждает к орбитальному движению.

Почему смещение перигелия Меркурия не удаётся рассчитать формулами классической физики? Потому, что в ее формулах не учитывается рост массы Солнца, и рост мощности его центростремительного потока во времени.

Какие процессы формируют спектры атомов? Ядро атома состоит из нескольких оболочек магнитонов, каждая из которых по форме напоминает поверхность яблока. В пределах каждой оболочки движутся магнетоны через центр и вокруг него. Магнитоны внутренних оболочек имеют большую угловую скорость, а значит и большую центробежную силу, чем магнитоны внешних оболочек. При возбужденном состоянии каждая оболочка излучает магнитоны, которые и формируют определенную линию спектра данного атома.

Почему газы разных по массе и объёму атомов при равной температуре и давлении в одном объеме содержат равное количество атомов?Потому, что между большими по массе атомами мечется большее количество меньших корпускул, по причине чего разные по массе атомы и удерживаются на одинаковых расстояниях друг от друга, вследствие чего и занимают одинаковый объем независимо от параметров атома.

Что собой представляют “электромагнитные волны”? В определенных условиях магнитоны и эфироны излучаются атомами. Магнитоны, покинувшие атомы, вязнут в структуре центростремительного потока. Меньшие же корпускулы - эфироны, которых в атоме, как и в любой другой структуре, приходится определенное количество на один магнитон, тоже покидают атомы группами с определенной частотой и с присущей им скоростью 2,99е+10 см./сек. движутся от источника во всех направлениях. Частота излучения определяет интервалы движения между группами эфиронов. Вследствие этих процессов каждая группа эфиронов формирует некую сферу, движущуюся в пространстве от источника. Движущиеся сферы облучают объекты, встречающиеся на их пути с определенной частотой, которая и воспринимается наблюдателями как частота электромагнитной волны. Как видно из описанных процессов в пространстве нет носителя электромагнитных волн. Нет и структуры, которая бы волновалась. Есть эфироны, которые излучаются атомами с определенной частотой и движутся от источника сферами во всех направлениях на одинаковом расстоянии друг от друга. Эти-то упорядоченные потоки эфиронов и воспринимаются наблюдателями в качестве электромагнитных волн. Свет представляет собой видимую часть электромагнитного спектра. Отличаются фотоны от эфиронов, хаотично мечущихся между магнитонами, лишь своей упорядоченностью в движении. После столкновения с каким-либо магнитоном фотон выбивается из упорядоченного потока и представляет собой уже рядовой эфирон, мечущийся между магнитонами. “Электромагнитный волны” имеет чисто корпускулярную природу! Дифракционные и интерференционные картины, которые якобы демонстрируют волновую природу света, получаются вследствие совсем иных процессов, чем те, которые предполагаются современными физиками.

Как формируются дифракционные и интерференционные картины? Фотоны, проходящие через щель или отверстие, проходят через плотные центростремительные потоки атомов. В процессе прохождения через плотные центростремительные потоки атомов фотоны испытывают на себе удары эфиронов и от атомов и в их направлении, но в направлении атомов испытывают большее количество ударов эфиронами, чем со стороны относительно свободной. Фотоны, излучаемые различными оболочками атомного вихря, имеют различную энергию. Силой ударов эфиронами фотоны, имеющие большую энергию, отклоняются на меньшее расстояние, а фотоны, имеющие меньшую энергию, отклоняются на большее расстояние, вследствие чего на экране и формируются зоны, освещенные и зоны, в которые не попадают фотоны, вследствие чего и наблюдаются дифракционные картины. Интерференционная картина получается вследствие столкновений двух когерентных потоков фотонов. Работая с раздвоенным лучом, можно направить на исходный луч под определенным углом его зеркальное отражение таким образом, что фотоны луча и фотоны его зеркального отражения создадут при столкновении друг с другом зоны своей концентрации и зоны, недоступные для попадания фотонов на экран. Вследствие чего и образуется на экране интерференционная картинка. Если же перекрыть путь на экран одному из потоков фотонов, то интерференционная картинка исчезнет. Исчезнет потому, что не будет столкновения фотонов, а потому и исчезнут зоны их распределения на экране. Если отраженный луч направить под определенным углом в точку, освещенную основным лучом, то освещенное пятно не станет ярче, а напротив, исчезнет вовсе. Исчезнет потому, что при столкновении фотоны двух лучей под определенным углом рассеются. Необходимо именно зеркальное отражение основного луча, ибо фотоны любого другого самостоятельного источника никогда не будут претерпевать столкновений, даже если применять какие угодно ухищрения, - фотонам всегда будет достаточно пространства, для того чтобы проходить к экрану без столкновений с фотонами некогерентного источника, имеющего независимое пространственное распределение фотонов в луче. Не имея информации о центростремительных потоках корпускул ни только атомов, но и о центростремительном потоке Солнца и планеты, физики прошлого вынуждены были обратиться к аналогиям волнующихся сред, на которых интерференция и дифракция были очевидными. Вот физики и наделили корпускулярные потоки волновыми свойствами, хотя волновыми свойствами они и не обладают. У всякого рода излучений корпускул нет среды распространения, которая могла бы волноваться, искривляться. Сами центростремительные потоки магнитонов имеют очень высокую вязкость, а потому гасят любые волны в себе практически мгновенно. Мыльная пленка http://nauka.relis.ru/34/0508/34508029.html покрыта цветными полосами и это не интерференционна картина. У мыльной пленки имеется две не параллельных поверхности, между которыми мечутся отраженные фотоны. В области большей толщины пленки мечутся фотоны, имеющие меньшую частоту, а в области меньшей толщины мечутся фотоны, имеющие большую частоту излучения, вследствие чего и наблюдаются цветовые полосы. Определенная частота колебаний фотонов между поверхностями пленки определяет соответствующий цвет полосы. К верхней части рамки мыльная пленка, естественно, резче меняет толщину между двумя поверхностями пленки, а потому и шире зоны, в которых мечутся фотоны определенной частоты. В нижней части рамки расстояние между поверхностями мыльной пленки меняется плавней, а потому там мечутся фотоны всяких частот, для которых толщина пленки больше интервалов между движущимися фотонами.

Каков механизм отклонения луча света в “гравитационном” поле Солнца? Эфироны, движущиеся от какой-либо звезды, при прохождении через центростремительный поток в непосредственной близости от Солнца, испытывают на себе удары эфиронами и со стороны Солнца, и в направлении от него, но со стороны свободного пространства испытывают большее давление, чем со стороны Солнца, вследствие чего луч и отклоняется в сторону Солнца. В поле звезды луч света должен отклоняться меньше, чем в поле планеты, потому что у звезды имеется мощный поток излучаемых эфиронов, который противодействует эфиронам центростремительного потока звезды. Почему магнитные полюса Солнца, Земли периодически меняются местами? Ядро сверхплотной материи имеет много оболочек, в пределах которых движутся магнитоны. Внешняя оболочка, принимающая в свой состав центростремительный поток, растет лишь до определенной насыщенности. По достижению определенной насыщенности внешняя оболочка перестает принимать в свой состав магнитоны центростремительного потока. По мере поступления центростремительного потока к поверхности сверхплотного ядра давление на ядро возрастает, силой которого корпускулы вновь внедряются в центр ядра, но уже со стороны выхода корпускул из ядра. Магнитоны внедряются в центр углубления северного полюса, проходят через центр и формируют следующую внешнюю оболочку сверхплотного ядра, движущуюся в противоположном направлении предшествующей оболочки, что и наблюдается в качестве смены магнитных полюсов и у Солнца и у Земли. У Солнца смена полюсов наблюдается каждые 11 лет, а у Земли смена полюсов происходит через 32 миллиона лет и каждый следующий период между активностью короче предыдущего. Сокращение промежутка между активность Солнца при вдумчивом наблюдении должен быть наблюдаемым. Таким образом, полюса меняются у всех макро объектов, имеющих сверхплотное ядро. Чем масса сверхплотного ядра больше, тем период, разделяющий смену полюсов меньше. Переход пятна Нептуна из одного полушария в другое, произошел в процессе смены его полюсов.