Смекни!
smekni.com

Генетическая память, молекулярные биопроцессоры и их выходное управляющее звено (стр. 2 из 4)

2. Молекулярные биопроцессорные системы. Генетическая память, молекулярные биопроцессорные системы и их выходное управляющее звено – белки и ферменты являются центральными устройствами, на базе которых построена управляющая система клетки. Гены служат только для хранения информации, поэтому её необходимо сначала считывать, а затем определённым образом перерабатывать с тем, чтобы получить форму, приспособленную для непосредственного применения в различных биологических процессах. Для этой цели в клетке применяются специальные аппаратные средства транскрипции и трансляции, которые представляют собой ничто иное, как молекулярные системы для микропрограммной переработки генетической информации. Фактически каждая живая клетка для микропрограммной обработки генетической информации применяет такие аппаратные устройства, которые с кибернетической точки зрения вполне эквивалентны молекулярным биологическим процессорам.

Состав и характеристики транскрипционного и трансляционного аппаратов достаточно наглядно отражены в соответствующей биологической литературе. Поэтому можно легко убедиться в том, что эти аппараты, как системы с микропрограммным управлением, имеют все необходимые узлы, компоненты и характеристики, позволяющие их отнести к категории молекулярных биопроцессорных систем управления. Молекулярная биопроцессорная система отличается от управляющего микропроцессора не только вещественно-информационным субстратом или методом обработки информации в управляющие сигналы, но и широким параллелизмом действия её биопроцессорных единиц. Поэтому биопроцессорные единицы, несмотря на то, что они практически состоят из одних и тех же компонентов, можно легко подразделять как по назначению, так и по характеру выполняемых ими функций.

Процесс управления в сложных технических устройствах и в живой клетке, в определённой мере, выполняет одни и те же задачи, хотя есть и существенные различия в информационных субстратах и в организации самих информационных процессов. Кроме того, если информация в технических устройствах есть функция аппаратной системы, то в живых клетках чаще всего наоборот, – информационные сообщения сами являются базовой основой построения или реорганизации аппаратной системы клетки (белков, ферментов и других функциональных устройств). Сердцем управляющей системы живой клетки являются генетическая память и локальные биопроцессорные контуры управления, находящиеся, как в цитоплазме клетки – трансляционный аппарат, так и биопроцессорные системы верхнего уровня, находящиеся в клеточном ядре – транскрипционный аппарат. Эти аппараты выполняют различные информационные функции. К примеру, ядерные биопроцессорные устройства верхнего уровня (транскрипционный аппарат) служат для микропрограммного управления процессами считывания генетической информации в оперативную память рибонуклеиновых кислот. Известно, что ДНК и РНК живой клетки построены из одних и тех же мономерных звеньев – нуклеотидов. Однако между этими двумя нуклеиновыми кислотами имеются определённые различия, которые и привели к появлению в живой клетке особой молекулярной биопроцессорной системы, которая предназначена для считывания информации с ДНК-матрицы и переноса её на структуру РНК. “Этот процесс носит название транскрипции (переписывания). При этом часть двойной спирали ДНК раскручивается, и вдоль одной из её цепей движется особый фермент, который выстраивает нуклеотидные мономеры РНК против их партнёров на цепи ДНК и соединяет эти мономеры друг с другом, так что образуется длинная цепь РНК… На ДНК-матрице образуется три типа РНК: информационная, транспортная и рибосомная” [3]. Таким образом, задача по считыванию генетической информации в оперативную память структуры РНК решается путем выполнения отдельных микроопераций строго в соответствии с микропрограммой того участка ДНК, который определяется структурным геном. Результатом работы транскрипционной процессорной системы является загрузка в оперативную память РНК структурной и программной информации, которая необходима для выполнения различных биологических функций живой клетки. Так происходит считывание генетической информации и передача её к другой биопроцессорной системе для трансляции, то есть для перевода информации иРНК в аминокислотную последовательность белковых молекул с помощью генетического кода. В виде информационной РНК, которая в клеточной системе выполняет роль оперативной памяти, генетические программы по синтезу полипептидов передаются к белоксинтезирующему аппарату клетки, то есть к рибосомам. Кратко рассмотрим принцип работы молекулярной биопроцессорной системы трансляции (трансляционный аппарат). Основным компонентом типовой биопроцессорной единицы является рибосома. Важная регулирующая роль в синтезе белка помимо иРНК принадлежит тРНК. С помощью специального фермента аминоацил-тРНК-синтетазы тРНК присоединяет на одном из своих концов молекулу соответствующей аминокислоты, в результате чего возникает комплекс аминоацил-тРНК. тРНК при участии белковых факторов устройства управления и энергии гуанозинтрифосфата (ГТФ) доставляет аминокислоту в рибосому для включения ее в растущий полипептид. С помощью своего антикодона тРНК информационно взаимодействует с комплементарным ему кодоном иРНК и таким образом обеспечивает необходимую последовательность микроопераций включения аминокислот в синтезируемую полипептидную цепь, строго в соответствии с микропрограммой заданной иРНК. Благодаря этой функции тРНК дешифрует генетический код в иРНК-матрице и переводит его в биологический код аминокислотной последовательности белка. Сама рибосома, в частности, обладает каталитической функцией, ответственной за образование пептидных связей в цепи белка. Как мы видим, иРНК в биопроцессоре играет роль матричного модуля оперативной памяти, несущего микропрограмму преобразования генетической информации в структурную и функциональную информацию полипептидной цепи белка.

Таким образом, задача по преобразованию генетической информации в линейную структуру белка решается путем выполнения отдельных элементарных микроопераций строго в соответствии с заданной микропрограммой, которая заранее была загружена в оперативную память структуры иРНК. При этом системой реализующей процесс трансляции с известными стадиями инициации, элонгации и терминации является молекулярный биологический процессор. Весь ход процессинга и адресной доставки фермента в соответствующий компартмент осуществляется в виде отдельных операций манипуляторами устройства управления, точно в соответствии с кодовыми компонентами белка. В результате конформационного преобразования и процессинга макромолекула фермента (белка) приобретает характерную трехмерную конформацию со своими стереохимическими кодами и, в связи с этим, – свой информационно-кибернетический статус. Далее, точно в соответствии с функциональным адресным кодом и кодом каталитической операции фермент, действуя как молекулярный биологический автомат, выполняет определенный тип химической реакции. Если фермент является аллостерическим, то на него могут воздействовать регуляторные молекулы обратных связей, влияя, таким образом, на ход химической реакции. Так происходит реализация управляющей генетической информации. Поскольку каждый фермент способен ускорять лишь какую-то одну цепь реакций данного соединения, не влияя на другие возможные реакции, то в отдельно взятом компартменте одновременно может протекать множество различных химических реакций. В связи с этим можно сделать заключение о том, что других специальных механизмов синхронизирующих работу белков и ферментов, по-видимому, не требуется (кроме сигналов обратных связей или изменения физических и химических факторов микросреды). Если работу трансляционного аппарата рассматривать с информационной точки зрения, то он, как молекулярный биопроцессор, выполняет следующие основные функции:

1) реализацию алгоритма связывания начальной точки считывания матричной цепи иРНК (оперативной памяти) с рибосомой (процесс инициации трансляции);

2) микропрограммное преобразование, в реальном масштабе времени линейных информационных кодов (триплетов) иРНК в линейную аминокислотную кодовую последовательность полипептидной цепи белка (процесс элонгации);

3) реализацию алгоритма процесса терминации (завершения) трансляции. Далее устройство управления биопроцессорной системы осуществляет: 4) конформационное преобразование полипепидной цепи (процесс стереохимического кодирования) и процессинг, связанные с формированием стереохимических кодов фермента (белка), предназначенных для управляющих воздействий и приема регуляторных сигналов обратных связей;

5) автоматическое распределение и адресную доставку управляющих белков в соответствующий операционный блок (компартмент);

6) реализацию ферментами управляющих воздействий в соответствии с их адресными и каталитическими кодами, определяющими требуемый результат управления;

7) согласование взаимодействия выходного управляющего звена (ферментов) биопроцессорной системы с управляемыми биохимическими объектами (субстратом) по их сигнальным кодовым компонентам;