Смекни!
smekni.com

Способ устойчивого решения неустойчивых задач и его алгоритм (стр. 2 из 2)

На основе полученных расчетов в дальнейшем предполагается формирование числовой трехмерной матрицы для программы COMMODOR [3], (см. рисунок).

Алгоритм УЭС1 и его предыдущие этапы ЭС, УЭС [1, 4, 5] были разработаны применительно к ОЗ ВЭЗ, которая является типичной неустойчивой (некорректной) задачей. Неустойчивость её определяется явлением эквивалентности, то есть неопределенности и проявляется обычно в сложных задачах поиска неизвестной причины по известному следствию, что имеет место в обратных задачах геофизики, радиофизики, ядерной физики и т.д. [7].

А раз так, то алгоритм УЭС1, точнее его ключевые моменты могут быть использованы как основа для разработки аналогичных по своему вероятностному подходу, на основе математического моделирования, подобных же алгоритмов для других конкретных задач этого класса. До сих пор здесь преобладает детерминистский подход [7].

Преимущество вероятностного подхода (алгоритм УЭС1) определяется тем, что в нём в качестве исходного элемента алгоритма любой неустойчивой задачи, используется уже известное эквивалентное (неустойчивое) её решение, то есть блок эквивалентного подбора (см. рисунок). Этот блок подбора встраивается в систему связей, ограничений и взаимодействия алгоритма УЭС1 и всех его предыдущих этапов (ВЭЗ-градиент, ЭС, УЭС), (см. рисунок)

Автором по аналогичной схеме был использован блок эквивалентного решения с дополнительной эквивалентной оптимизацией обратной задачи ВЭЗ (ВЭЗ ОЗ) Рыжова А.А. [8, 9], доработанного на ЭВМ СМ-1 Капраловым В.А.

При этом система связей блока ВЭЗ ОЗ была известна автору лишь схематически. Этот блок ВЭЗ ОЗ и стал первой программной оболочкой будущего пакета. Но вначале автором был разработан блок расчёта предварительной модели геоэлектрического разреза ВЭЗ-градиент в режиме автомата-полуавтомата на основе способа особых точек (алгоритм ВЭЗ-градиент) [10]. Блок ВЭЗ-градиент (см. рисунок) может работать и автономно. По объёму он превышает блок ВЭЗ ОЗ и практически является управляющим блоком всей системы. Затем блок подбора и блок ВЭЗ-градиент встраивались в оболочку эквивалентной стабилизации (ЭС) с весьма основательным дополнением в подпрограмму эквивалентной оптимизации "OPT" (системы ограничений параметров режиме автомата-полуавтомата с увеличением объёма в подпрограмме "OPT" в 1,5 раза). Другая подпрограмма "TEKCT", была увеличена по объёму в 3,5 раза и т.д.

Разработанные программы предыдущих этапов: эквивалентной стабилизации, ЭС (ВЭЗ 2, 4, 6-градиент) встраивались в оболочку алгоритма управляемой эквивалентной стабилизации УЭС (программа ВЭЗ8-градиент [1]), а затем, последовательно в оболочку связей алгоритма УЭС1 (ВЭЗ9-градиент). В итоге имеем единую систему-программу ВЭЗ9-градиент с достаточно простой математикой, но сложной логикой, надёжно и устойчиво работающей как на теоретическом, так и на практическом материале при средней погрешности оценок расчёта параметров геоэлектрического разреза на уровне   5 % для глубин и   10 % для мощностей и сопротивлений. Возможно их улучшение в дальнейшем до   3 % и   5 % соответственно в режиме МЦВ, с выбором решения по критерию уровня оценок погрешности или устойчивости при управляемом скользящем режиме поиска в интервале неустойчивости. Поэтому способ, основанный на алгоритме УЭС1, и называется способом устойчивого решения неустойчивых задач, с оперативной оценкой устойчивости и погрешности решения. Это можно в значительной мере отнести и к его предыдущему варианту [1].

Не видно оснований, чтобы не рассматривать предлагаемый способ УЭС (для краткости), как один из возможных путей решения аналогичных неустойчивых задач, именно как один из возможных вариантов их решения с естественной доработкой и видоизменением алгоритма УЭС1 к реальной ситуации конкретной задачи.

Следует отметить, что получаемый вариант решения отвечает реальной входной модели (для метода ВЭЗ - тип разреза), вид которой контролируется геофизиком и геологом. Другой входной модели может соответствовать несколько иной вариант решения. Выбор приемлемого варианта решения из пакетов соответствующих входных моделей является прерогативой - в случае метода ВЭЗ - геолога и геофизика, поскольку должен учитываться в том числе и неформальные знания геолога и геофизика, как результат накопленного ими опыта.

Таким образом, неопределённость решения сохраняется. Но на качественно ином, геологическом уровне. И это естественный путь последовательного решения сложных практических задач.

Список литературы

Пятин Н.М. Алгоритм управляемой эквивалентной стабилизации (УЭС), применительно к решению обратной задачи ВЭЗ, ОЗ ВЭЗ// Вестн. Воронеж. ун-та. Сер. Геологическая. - 2001 - No12. - С. 172-177.

Пятин Н.М. К вопросу оценки устойчивости и погрешности решения обратной задачи ВЭЗ на ЭВМ (на примере программы ВЭЗ6-градиент)// Вестн. Воронеж. ун-та. Сер. Геологическая. - 1998 - No5. - С. 198-200.

Аузин А.А., Глазнев В.В. Разработка трёхмерных компьютерных моделей геологических сред.// Вестн. Воронеж. ун-та. Сер. Геологическая. - 2000 - No10. - С. 177-182.

Пятин Н.М. Способ эквивалентной стабилизации при решении обратной задачи ВЭЗ.// Геологическое изучение и использование недр.- М., ВИЭМС,1994. - Вып. 3-4. - С. 52-61.

Пятин Н.М. Алгоритм способа эквивалентной стабилизации (применительно к решению обратной задачи ВЭЗ).// Геологическое изучение и использование недр. - М., ВИЭМС, 1995.- Вып. 2. - С.47-52.

Пятин Н.М. Способ эквивалентной стабилизации и его алгоритм.// Вопросы теории и практики геологической интерпретации гравитационных, магнитных и электрических полей: Тр. междунар. конфер. - Воронеж,1998. - С. 135-143.

Тихонов А.Н., Арсенин В.Я. Методы решения некорректных задач. - М., 1986. - 287 с.

Рыжов А.А., Гудзь В.И. Программы машинной интерпретации данных ВЭЗ и ВЭЗ ВП. - М., ВСЕГИНГЕО, 1978. - 87 с.

Рыжов А.А., Каринская И.Д. Программы решения прямой и обратной задачи ВЭЗ и ВЭЗ ВП для ЭВМ ЕС. - М., ВСЕГИНГЕО, 1982. - 133 с.

Пятин Н.М. Алгоритм приближённого решения обратной задачи ВЭЗ.// Методика и результаты геофизических исследований Воронежского кристаллического массива: Сбор. Воронеж. ун-та, 1985. - С. 103-110.

Пятин Н.М. Программы обработки ВЭЗ, ВЭЗ ВП на СМ ЭВМ.// Передовой научно-производственный опыт. Информационный сборник. - М., ВИЭМС, 1989, No15. - С.16-24.