Подставляя эти значения в (2.1), получим группу преобразований координат МСО
, , (2.10)Группа содержит два типа неизвестных. Неизвестные типа
играют роль «фазового множителя» и остаются произвольными. Их можно определить только для частного случая - пустого пространства. В этом случае - действительные положительные величины и 0, если , и , если (2.11)Применительно к галилеевым системам первое значение соответствует до световым
, второе – сверхсветовым скоростям. Оба значения физически равноценны и не противоречат каким-либо законам физики, но ввиду того, что скорость массивных тел обычно не превышает скорости света, второе значение отбрасывается.Неизвестные
определяют метрику и, в принципе, известны поскольку задаются отношением скоростей МСО и сигнала , , (2.12)К этим значениям, можно было бы прийти и иным путем \6,7\
Как видим, координаты событий в МСО однозначно определяются относительным изменением энергии-импульса сигнала, который связывает эти системы. Если оно мало группа (2.10) переходит в преобразование Галилея, а если обусловлено только участием в относительном движении «безмассовых» ИСО - в преобразование Лоренца. Во всех остальных случаях МСО различимы и по-разному влияют на ход протекания процессов. Однако, это различие не нарушает инвариантность уравнений динамики относительно произвольных МСО.
3. Замедление времени и парадокс часов
Преобразования (2.10) внешне напоминают преобразование Лоренца, но сходство чисто внешнее. На самом деле между ними существует принципиальное различие. В СТО рассматривается связь между двумя «без массовыми» ИСО, а здесь мы имеем три системы, две из которых связаны с массивными телами, а третья – с сигналом. Это приводит к новым результатам и устраняет парадоксы. Покажем это на примере эффектов «сокращения длин» и «замедление времени».
В СТО доказывается, что время в движущихся ИСО течет в
раз медленнее, чем в покоящихся. Замедление касается всех процессов, включая и биологические. Такая интерпретация неизбежно приводит к парадоксу близнецов, поскольку каждая система движется относительно другой и нет никакого способа отличить одну ИСО от другой. Аналогичное следствие вытекает и из (2.10), , , (3.1)однако оно имеет совершенно иной смысл. Величина,
, которая в СТО характеризует ритм времени всей системы, здесь относится только к сигналу, точнее к шкале измерителя времени. Она одинакова для всех МСО и в этом нет никакого парадокса, поскольку сигнал проходит один и тот же путь относительно каждой системы и на это тратит одинаковую энергию.Разумеется, это не противоречит реально наблюдаемому замедлению времени жизни элементарных частиц, поскольку частицы сами движутся, т.е. сами являются источниками сигнала.
То же самое относится и к другому эффекту – сокращению длин.
, (3.2)Сокращается не длина предмета, а деформируется шкала линейки. Ведь предмет не станет длиннее или короче, если измерять его не в метрах, а в сантиметрах или километрах.
Метрика массивных систем отсчета
Определим структуру пространства вокруг массивных тел. Пусть заданы два тела, с которыми связаны МСО
и , снабженные соответствующими измерительными приборами. Введем обобщенные координаты и образуем метрику (4.1)где
Для простоты расчета будем считать, что тела имеют шарообразную форму и движутся относительно друг друга с некоторой скоростью. Выберем сферическую систему координат с началом в центре тела
,Второе тело
, будем считать малым и в качестве его метрики выберем метрику Минковского с сигнатурой (1,1,1,-1). Полагая , и учитывая (3.1) и (3.2), находим ; , (4.2) , (4.3)следовательно,
, (4.4)Это- метрика Шварцшильда, но с несколько иной структурой пространства-времени. Для удобства сравнения перенесем начало отсчета от
в пустое пространство. Тогда в первом (классическом) приближении , (4.5)где
- относительное изменение энергии сигнала при переходе из в . Изменение вызывается двумя причинами: участием сигнала в относительном движении МСО и взаимодействием с массивными телами и частицами среды. Если системы неподвижны и взаимодействие только гравитационное, то первый член в правой части (4.5) исчезает и метрика (4.4) автоматически переходит в метрику Шварцшильда. Если же системы движутся то возникает ряд новых эффектов, связанных с взаимодействием светового сигнала с инерционным полем. Покажем это на частном примереИмея в виду, что
, преобразуем (4.5) (4.6)Первый член соответствует метрике Минковского, последний – Шварцшильда. Остальные два показывают, что пространство вокруг массивных тел не только искривлено, но и закручено. Оно имеет спиральную структуру и ведет себя по отношению светового сигнала как среда с показателем преломления
(4.7)где
- единичный вектор в направлении распространения луча. Он является главным индикатором структуры пространства. Задавая его для разных сред мы всегда можем определить структуру пространства данной среды.5. Эффекты Доплера, Эйнштейна и Шапиро
Пусть отдаленная звезда
посылает на Землю сигнал в виде плоской монохроматической волны. Земной наблюдатель, принимая сигнал звезды, измеряет его частоту и сравнивая с частотой своего собственного (невозмущенного) сигнала , обнаруживает, что он отличается на величину . Изменение обусловлено участием сигнала в относительном движении , и взаимодействием с массивными телами и частицами среды.