Путенихин Петр Васильевич
Опровержению локального реализма и утверждению нелокальности квантовой механики уделяется большое внимание. Однако эйнштейновский локальный реализм трактуется однобоко практически всеми авторами, и в первую очередь, Беллом. Одно из таких опровержений локального реализма рассматривает Пенроуз в своей книге “Новый ум короля”. На примере его доводов в предлагаемой статье показано, что критикуемая модель локального реализма сформулирована с априорными противоречиями. Поскольку противоречия являются в большей степени искусственными, устранение их не представляет особого труда. Непротиворечивая модель объективного локального реализма заставляет по-новому взглянуть на проблему неполноты квантовой механики по Эйнштейну и поставить под вопрос нелокальность квантовой механики.
Телепортация, нелокальность квантовой механики, квантовая корреляция все чаще в литературе сопровождаются эпитетами “чудо”, “магия”, причем не в переносном, а в самом прямом смысле. К истокам возникновения таких взглядов на квантовую механику можно по праву отнести парадокс Эйнштейна-Подольского-Розена (ЭПР-парадокс). Сущность парадокса сводится к отрицанию так называемой нелокальности квантовой механики. Что такое нелокальность квантовой механики, хорошо сформулировал российский физик С.И.Доронин:
“Насчет того, что понимать под нелокальностью в КМ, то в научной среде, я считаю, сложилось некоторое согласованное мнение на этот счет. Обычно под нелокальностью КМ понимают то обстоятельство, что КМ противоречит принципу локального реализма (его еще часто называют принципом локальности Эйнштейна).
Принцип локального реализма утверждает, что если две системы A и B пространственно разделены, тогда при полном описании физической реальности, действия, выполненные над системой А, не должны изменять свойства системы В”.
Отметим, что основным положением локального реализма в приведенной трактовке является отрицание взаимного влияния друг на друга пространственно разнесенных систем. В.Б.Губин (Л.3) приводит цитату из работы ЭПР:
“у проекта ЭПР с двумя подсистемами основание более ясное: “...для наших целей нет необходимости давать исчерпывающее определение (физической. - В.Г.) реальности. Мы удовлетворимся следующим критерием, который считаем разумным. Если мы можем, без какого бы то ни было возмущения системы, предсказать с достоверностью (т.е. вероятностью, равной единице) значение некоторой физической величины, то существует элемент физической реальности, соответствующий этой физической величине.” (Л.2, с. 605) И в случае разделенных подсистем основание для вывода - невозможность воздействовать первым измерением на достаточно удаленную часть прежней полной системы: “Никакое разумное определение реальности не должно, казалось бы, допускать этого.” (Л.2, с. 611) Весомость последнего предложения многие авторы, пытающиеся сохранить копенгагенскую интерпретацию, принципиально недооценивают или вообще ее не понимают и не осознают”.
И здесь наиболее весомым положением эйнштейновского локального реализма признана та же невозможность влияния двух пространственно разнесенных систем друг на друга. Вторым весомым положением эйнштейновского локального реализма здесь является наличие некоего элемента физической реальности, соответствующего измеряемой величине. Необходимо обратить особое внимание на это обстоятельство: одной физической величине ставится в соответствие один элемент физической реальности.
Простую версию парадокса Эйнштейна-Подольского-Розена, принадлежащую Дэвиду Мермину, приводит Роджер Пенроуз в своей книге “Новый ум короля”. Поскольку он ссылается в этом описании на Дэвида Мермина, в ниже следующих рассуждениях мы будем просто об этом помнить каждый раз, когда будем говорить о доводах Пенроуза, подразумевая, что это в первую очередь доводы Мермина. Описанный ЭПР мысленный эксперимент поставил проблему полноты квантовой механики и ее локальности. С тех пор опровержению доводов ЭПР были посвящены множество статей и экспериментов. Основным из этих доводов против ЭПР-локальности квантовой механики стали неравенства Белла, доказывавшие, что никакими скрытыми переменными невозможно объяснить результаты квантовых экспериментов и прийти к тем же предсказаниям, какие дает квантовая механика. Хотя описание Пенроуза (Л.1, с.231) является популярным и рассчитано на читателей, не имеющих серьезной подготовки в этой области, это описание в максимально возможной степени отражает суть проблемы. Рассмотрим фрагмент главы ”“Парадокс” Эйнштейна, Подольского и Розена”:
“Почему мы не можем моделировать спины наших частиц – электрона и позитрона аналогично тому, как мы поступили в приведенном выше примере с черным и белым шарами, извлекаемыми из ящика? Будем рассуждать на самом общем уровне. Вместо черного и белого шаров мы могли бы взять два каких-нибудь технических устройства Е и Р, первоначально образовывавших единое целое, а затем начавших двигаться в противоположные сторону”.
В дальнейшем будем называть эти устройства, как и Пенроуз - машина Е и машина Р. На данном этапе никаких противоречий между квантово-механическими представлениями и локальным реализмом нет.
“Предположим, что каждое из устройств Е и Р способно давать ответ ДА и НЕТ на измерение спина в любом заданном направлении. Этот ответ может полностью определяться технической начинкой устройства при любом выборе направления – …”
Здесь также нет противоречий, данное допущение полностью обоснованно и очевидно может быть принято любой моделью локального реализма.
“…или, может быть, устройство дает только вероятностные ответы (вероятность определяется его технической начинкой) – но при этом мы предполагаем, что после разделения каждое из устройств Е и Р ведет себя совершенно независимо от другого”.
Это можно назвать недосказанностью, неточностью, которые безусловно необходимо отметить. Во-первых, вероятностный ответ должен включать в себя условие: настройки двух машин (устройств Е и Р) перед разделением принимают строго взаимозависимые состояния, хотя и случайным образом. То есть, если спин одной из машин может быть равновероятно любым, то спин другой – только противоположным первому. Во-вторых, после разделения машины ведут себя хотя и независимо, но состояние своих спинов не изменяют. С такими оговорками (уточнениями) модель также не противоречит локализму. Если же принять полную вероятностную картину поведения машин, то уже на этом этапе будет получена абсурдная модель локального реализма, не имеющая ничего общего с локальностью Эйнштейна. Действительно, любому ответу машины Е будет соответствовать любой ответ машины Р.
Рис.6.31. Простая версия парадокса ЭПР, принадлежащая Дэвиду Мермину, и теорема Белла, показывающие, что существует противоречие между локальным реалистическим взглядом на природу и результатами квантовой теории. Е-измеритель и Р-измеритель каждый независимо имеет по три настройки для направлений, в которых они могут измерять спины соответствующих частиц (электрона и позитрона)
“Поставим с каждой стороны измерители спина, один из которых измеряет спин Е, а другой – спин Р. Предположим, что каждый измеритель обладает тремя настройками для измерения направления спина при каждом измерении, например, настройками А, В, С для измерителя спина Е и настройками А’, B’, C’ для измерителя спина Р”.
Пенроуз (и Мермин) называет настройками, как следует из описания, собственно измерители – датчики, каналы измерения. При этом можно согласиться как с наличием именно трех пар этих датчиков (измерителей, настроек), так и с использованием одного датчика в измерителе (измерителя), который может вращаться и занимать одно из трех направлений А, В, С и А’, B’, C’. При этом оси одноименных датчиков всегда параллельны:
“Направления А’, B’, C’ должны быть параллельны, соответственно, направлениям А, В и С. Предполагается также, что все три направления А, В и С лежат в одной плоскости и образуют между собой попарно равные углы, т.е. углы в 120о (рис.6.31). Предположим теперь, что эксперимент повторяется многократно и дает различные результаты для каждой из настроек”.
Строго говоря, один из датчиков может быть установлен в направлении А, а другой – в направлении В’. Датчиков может быть и шесть. При этом каждой испущенной источником паре частиц будет соответствовать один акт измерения, в котором сработают только два из шести датчиков – по одному с каждой из сторон.
“Иногда Е-измеритель фиксирует ответ ДА (т.е. спин направлен вдоль измеряемого направления А, В или С), иногда фиксирует ответ НЕТ (т.е. спин имеет направление, противоположное тому, в котором производится измерение). Аналогично, Р-измеритель фиксирует иногда ответ ДА, иногда – НЕТ. Обратим внимание на два свойства, которыми должны обладать настоящие квантовые вероятности:
Если настройки устройств Е и Р одинаковы (т.е. А совпадает с А’ и т.д.), то результаты измерений, производимых с помощью устройств Е и Р, всегда не согласуются между собой (т.е. Е-измеритель фиксирует ответ ДА всякий раз, когда Р-измеритель дает ответ НЕТ, и ответ НЕТ всякий раз, когда Р-измеритель дает ответ ДА).
Если лимбы настроек могут вращаться и установлены случайно, т.е. полностью независимо друг от друга, то два измерителя равновероятно дают как согласующиеся, так и не согласующиеся результаты измерений.
Нетрудно видеть, что свойства (1) и (2) непосредственно следуют из приведенных выше правил квантовых вероятностей. Мы можем предположить, что Е-измеритель срабатывает первым. Тогда Р-измеритель обнаруживает частицу, спиновое состояние которой имеет направление, противоположное измеренному Е-измерителем, поэтому свойство (1) следует немедленно.
Чтобы получить свойство (2), заметим, что для измеряемых направлений, образующих между собой углы в 120о, если Е-измеритель дает ответ ДА, то Р-направление расположено под углом 60о к тому спиновому состоянию, на которое действует Р-измеритель, а если Е-измеритель дает ответ НЕТ, то Р-направление образует угол 120о с этим спиновым состоянием. С вероятностью 3\4 = (1\2)(1 + cos60о) измерения согласуются, и с вероятностью 1\4 = (1\2)(1+cos120о) они не согласуются. Таким образом, усредненная вероятность для трех настроек Р-измерителя при условии, что Е-измеритель дает ответ ДА, составляет (1\3)(0 + 3\4 + 3\4) = 1\2 для ответа ДА, даваемого Р-измерителем, и (1\3)(1 + 1\4 + 1\4) = 1\2 для ответа НЕТ, даваемого Р-измерителем, т.е. результаты измерений, производимых Е- и Р-измерителями, равновероятностно согласуются и не согласуются. Аналогичная ситуация возникает и в том случае, когда Е-измеритель дает ответ НЕТ. Это и есть свойство (2) (см.с.218)”.