Смекни!
smekni.com

Полноправность и физическая значимость электромагнитных векторных потенциалов в классической электродинамике (стр. 2 из 3)

Об исключительности уравнений векторных потенциалов говорит и тот факт, что дифференцирование по времени только магнитных уравнений системы (5) преобразует ее с учетом вышеизложенного в новую систему уравнений относительно полей электрической напряженности и ее вектор-потенциала:

(a)

, (b)
, (6)

(c)

, (d)
.

Соответственно, дифференцирование по времени пары уравнений электрического векторного потенциала в системе (5) преобразует ее в другую новую систему уравнений теперь уже относительно полей магнитной напряженности и ее вектор-потенциала:

(a)

, (b)
, (7)

(c)

, (d)
.

Сделаем общее для всех систем замечание о дивергентных уравнениях. Как уже говорилось, уравнение

является калибровкой, обеспечивающей однозначность функции векторного потенциала
, поэтому, согласно симметрии уравнений в рассматриваемых системах, другие дивергентные уравнения: (1b) при ρ = 0, (1d), (6b) и (7b) математически следует считать соответствующими калибровками для функций вихревых полей
и
.

Судя по симметрии, представленные здесь системы уравнений физически столь же значимы, как и традиционная система (1), поскольку в их структуре также заложено принципиальное неразрывное единство переменных во времени полей электрического

и магнитного
векторных потенциалов в системе (5), полей электрической напряженности
и ее вектор-потенциала
в системе (6), и, наконец, полей магнитной напряженности
и ее вектор-потенциала
в системе (7). При этом каждая из систем, несмотря на функциональную взаимосвязанность с другими, вполне самодостаточна при описании определенного класса физических явлений, строгое обоснование достоверности которых возможно в рамках именно этой конкретной системы электродинамических уравнений. Как видим, полученные результаты несомненно перспективны в плане непосредственного обсуждения роли и места векторных потенциалов в явлениях электромагнетизма.

Согласно структуре представленных уравнений, описываемые ими поля распространяются в пространстве в виде волн, скорость которых определяется лишь электрическими и магнитными параметрами этого пространства. Таким образом, имеем теперь волновые уравнения не только для электромагнитных полей

и
, но и для их векторных потенциалов
и
в парных комбинациях этих четырех уравнений в зависимости от системы. В итоге возникает физически очевидный, принципиальный вопрос: какие это волны, и что они переносят? Другими словами, необходимо выяснить физическое содержание представленных здесь систем электродинамических уравнений.

С точки зрения эффективности анализа физического содержания представленных уравнений укажем на предпочтительность использования в классической электродинамике международной системы единиц физических величин СИ в сравнении с абсолютной системой единиц СГС. Размерность в системе СИ множителя e 0 в материальных соотношениях для

оправдана тем, что тем самым объединяются физически различные электрические величины: линейный (силовой) вектор напряженности
и потоковый вектор смещения
. Аналогично, в другом соотношении размерная константа m 0 связывает линейные и потоковые векторные магнитные величины:
. Напротив, в гауссовой системе единиц безразмерные коэффициенты e 0 = 1 и m 0 = 1 делают векторы
и
,
и
сущностно тождественными, что обедняет физическое содержание соотношений электромагнетизма, оголяя в них формализм математики. Физические свойства указанных полей, акцентируемые системой СИ, наиболее полно отражены в электродинамических уравнениях Максвелла (1), где (Максвелл [1] это особо подчеркивал) описываются вихри именно линейных векторов
и
, а дивергенции - потоковых
и
. Соответственно, векторные потенциалы
и
по определению являются линейными векторами, а векторы отклика среды на воздействие этих полей
и
- потоковыми.

В случае системы (6) рассмотрим аналогично вектору Пойнтинга плотности потока электромагнитной энергии

другой потоковый вектор
, который, судя по размерности, определяет электрическую энергию, приходящуюся на единицу площади поверхности. Для физически аргументированного обоснования возможности существования такого вектора воспользуемся стандартными рассуждениями и из уравнений системы (6) в итоге получим:

(8)

- уравнение энергетического баланса процесса электрической поляризации среды в данной точке. Как видим, уравнения полей электрической напряженности

и ее векторного потенциала
в системе (6) описывают чисто электрические явления, показывают реальность волн, переносящих только электрическую энергию.

Подобным образом можно ввести потоковый вектор

, размерность которого определяет поверхностную плотность магнитной энергии. Подтверждение этому найдем из уравнений (7) в виде уравнения энергетического баланса процесса намагничивания среды в данной точке:

. (9)

Следовательно, уравнения полей магнитной напряженности

и ее векторного потенциала
в системе (7) описывают чисто магнитные явления, устанавливают существование волн, переносящих только магнитную энергию.

Очевидно, что такие результаты анализа систем (6) и (7) в принципе невозможны и просто абсурдны в рамках традиционных уравнений Максвелла, но это нисколько не является недостатком системы (1), а лишь иллюстрирует автономию при описании полей в одной системе уравнений по отношению к другим.

Полученные уравнения энергетического баланса (8) и (9) описывают не только энергетику обычной электрической и магнитной поляризации среды с помощью соответствующей напряженности поля (первое слагаемое), но и показывают возможность реализации эффектов динамической поляризации вещества посредством изменяющегося во времени поля векторного потенциала, причем наличие электропроводности среды способствует этому. Надо сказать, что явления динамической поляризации уже имеют реальное экспериментальное воплощение: это эффекты электродинамической индукции в металлах [2] и динамического намагничивания в ферритах и магнитоупорядоченных металлах [3].

Аналогично вводится потоковый вектор

, определяющий поверхностную плотность момента импульса. Соответственно, уравнения (5) позволяют получить уравнение баланса процесса передачи момента импульса поля электромагнитных потенциалов: