. | (1.6) |
Кроме того, в большинстве случаев звенья манипулятора представляют собой твердые тела, обладающие симметрией относительно трех ортогональных осей, проведенных через центр инерции. Напомнив правило разметки осей систем координат, связанных со звеньями, в соответствии с которым одна из осей системы
совпадает с осью звена (вектором ), а две другие образуют с ней правую триаду, получим при помещении точки в центр инерции (см. рис. 1.1) оси полученной системы становятся главными осями инерции и тензор вектора в точке имеет вид диагональной матрицы, | (1.7) |
моменты инерции относительно осей в которой определяются выражениями
, | (1.8) |
и для звеньев заданной конфигурации являются известными константами. При отсутствии осевых симметрий тензор инерции звена в точке
характеризуется матрицей, | (1.9) |
центробежные моменты в которой определяются выражениями
(1.10) |
и также являются известными константами.
Определим вектор скорости центра инерции звена i через проекции на оси связанной с ним системы координат как
(1.11) |
или через проекции на оси неподвижной системы осей в виде
. | (1.12) |
По аналогии с
введем вектор угловой скорости звена(1.13) |
и запишем равенство (1.6) в развернутой форме для случая, когда звенья манипулятора обладают симметрией относительно главных осей инерции. Для этого подставим выражения
, , из (1.7), (1.11), (1.13) в (1.6) и получим. | (1.14) |
При использовании вектора скорости центра инерции в форме (1.14) выражение
, | (1.15) |
с учетом которого равенство (1.4) принимает вид
. | (1.16) |
Построение динамической модели переходных процессов манипулятора МРЛ-901П
Модель переходных процессов в манипуляторе МРЛ-901П
Модель портального манипулятора МРЛ-901П представлена на рис. 2.1. Деформирующимися элементами в манипуляторе являются: зубчатый ремень, обозначенный пружиной; консольная часть, на которой имеется сосредоточенная масса m. Деформация поперечной консоли обозначена на схеме углом
. Исходными данными для расчета такой модели будут: значение подвижной массы m, плечо приложения этой массы l, а также коэффициент натяжения зубчатого ремня, определяемый как отношение прогиба ремня к его длине и влияющий на жесткость, и демпфирование модуля линейного перемещения.При остановке электроприводов подвижные массы будут продолжать движение под действием инерционных сил, в результате чего точки А и Б займут положение
и соответственно, затем остановятся и под действием сил упругой деформации пружины и балки начнут совершать колебательное движения.Рассматриваемая модель имеет три степени свободы, обозначим независимые обобщенные координаты как
, и . Для описания данной модели воспользуемся уравнением Лагранжа второго рода:(j = 1,2,…,k), | (2.1) |
где T- кинетическая энергия системы; Q - обобщенная сила; k - количество степеней свободы.
Кинетическая энергия системы с тремя степенями свободы является однородной квадратичной формой обобщенных скоростей [5]:
, | (2.2) |
Коэффициенты
являются функциями координат , и .Предположим, что обобщенные координаты отсчитываются от положения равновесия, где
.Располагая коэффициенты
по степеням и пологая для упрощения записи , получим:(2.3) |
Потенциальная энергия
системы:(2.4) |
При этом учитываем, что в положении равновесия
обобщенные силы также обращаются в нуль.В (2.4) для упрощения приняты следующие обозначения:
, , , , , .Для составления дифференциальных уравнений свободных колебаний в форме уравнений Лагранжа второго рода, выразим потенциальную энергию через обобщенные координаты. Рассмотрим равновесие системы, на которую действуют силы
…, . Потенциальная энергия в состоянии устойчивого равновесия имеет минимум, равный нулю, а при вызванном действием сил отклонении от него выражается квадратичной формой вида (2.4).Элементарная работа всех сил действующих на систему, по принципу возможных перемещений должна быть равна нулю:
. | (2.5) |
Замечая, что
а также приравнивая к нулю коэффициенты при независимых вариациях
, и , получаем три уравнения: