Рассмотрим теперь конкретно задачу построения алгоритмов CMCН ДПЛА с идентификатором в контуре управления. Имеется несколько вариантов синтеза. В этом случае задача сводится к отысканию расчетных соотношений для параметров
, , , , , , , , , , , в предположении, что имеется информация о параметрах относительного движения , , , , , , измеренных с помехами, и параметрах полета ведомого ЛА. Указанные параметры необходимы для реализации алгоритмов СМСН.Рассмотрим относительное движение двух ЛА в пространстве. В этом случае изменение углов места и азимута, дальности, угловых скоростей линии визирования, радиальной скорости описывается в основной СК системой уравнений вида:
(13) | |
, |
где
, , .Эта система может быть положена в основу синтеза алгоритмов нелинейной фильтрации для получения оценок
, , , идентификации , , , , , .Для вычисления оценок параметров
, , , , , , и т.д. необходимо определить математические ожидания этих функций на основе плотности распределения оценок , , , , , . Поскольку этот путь связан с громоздкими вычислениями многомерных интегралов, можно использовать более простой, но приближенный способ, согласно которому оценки перечисленных параметров вычисляются по определенным формулам, куда в качестве , , , , , входят их оценки. Используя информацию об этих оценках, можно определить значения относительных скоростей и ускорений в траекторной СК ведущего ЛА, сформировать программные значения.Таким образом, основная задача состоит в определении оценок
, , , , , . Конкретному рассмотрению алгоритмов оценивания и идентификации параметров относительного движения ЛА предпошлем краткое изложение некоторых общих принципов их построения.Методически исследование по выбору алгоритмов обработки информации в СМСН ДПЛА проводилось по следующей схеме Это, в первую очередь, касалось замены исходной нелинейной модели состояния и наблюдений тем или иным приближением и построение алгоритма оценивания на основе такой аппроксимации. Во-первых, для решения поставленной проблемы используется подход, основанный на дискретной аппроксимации динамической модели относительного движения. Это позволяет наиболее эффективно реализовать алгоритмы нелинейной фильтрации в БЦВМ, в основу которых положены дискретные методы оценивания. Во-вторых, нелинейные уравнения модели и наблюдений раскладываются в ряд Тейлора до членов первого порядка включительно относительно оценки на предыдущем шаге. В-третьих, в качестве математических моделей идентифицируемых параметров системы используются локальные модели, описывающие изменения параметров лишь в узком диапазоне изменения времени. Простейшей локальной моделью изменения параметров является следующая:
, | (14) |
где
вектор параметров, время.Другая локальная модель изменения параметров может быть представлена в виде:
, | (15) |
, |
где вектор
подлежит оценке наряду с вектором . В дискретном виде эти модели можно записать соответственно как, | (16) |
и
, | (17) |
. |
В принципе, значение степени полинома можно повысить, но это усложнение приводит лишь к незначительному увеличению точности оценки.
В введении таких моделей состоит способ расширения вектора состояния, позволяющий получить принципиальное решение задачи совместной идентификации параметров и оценивания вектора состояния. Включая в число компонент расширенного вектора состояния
параметры вектора локальной модели (16), получим уравнения динамической системы двенадцатого порядка.