∆K1= [2B21/(C11 – C12)] + [B22/C44] – [C11{B21/(C11 – C12)2}]+
+ [½ C44 (B22/C244)]+[ C12 {B21/(C11 – C12)2] =
= [B21/(C11 – C12)] – ½[B22/C44]=9/4 l2100(C11-C12) – 9/2l2111C44
(25)
Как видно из (24), вид зависимости плотности энергии от направляющих косинусов не изменился, но константа анизотропии благодаря спонтанной деформации решетки увеличилась.
§2. Физическая природа естественной магнитной анизотропии.
В первых работах Акулова магнитное взаимодействие в ферромагнитных кристаллах с микроскопической точки зрения трактовалось чисто классическим путем. Квантовомеханическая трактовка была дана в работах Блоха и Джентиля. Классическую теорию температурной зависимости констант магнитной анизотропии развили Акулов и Зинер, исходя из представления о том, что около каждого узла решетки можно выделить области ближнего магнитного
порядка с не зависящими от температуры локальными константами анизотропии. Локальные мгновенные намагниченности этих областей из-за теплового движения распределены хаотически и образуют среднюю намагниченность всего кристалла. Отсюда удается определить связь между температурным ходом констант анизотропии и намагниченности в виде
Kn(T)/Kn(0) = [Is (T)/Is (0)]n(2n+1) , (26)
где n – порядок константы. Таким образом, мы приходимкуниверсальной зависимости K1≈ I3s и K2≈ I10s. Pезультат (26) получается в приближении теории молекулярного поля . Микроскопические трактовки этой проблемы даны в работах Ван - флека и Канамори.
В основе всех расчетов по микроскопической теории магнитной анизотропии лежит учет магнитного взаимодействия между спиновыми
и орбитальными магнитными моментами электронов, принимающих участие в ферромагнетизме. В общем случае оператор магнитной энергиискладывается из трех членов.
Hмагн.=U1+U2+U3(27)
гдеU1— оператор, соответствующий движению электронов относительноионов решетки,— спин-орбитальная энергия;U2 — оператор магнитнойэнергии, возникающей вследствие относительного движения самих электронов, —орбитальная энергия;U3 — оператор энергии магнитноговзаимодействия спиновых магнитных моментов электронов — спиноваяэнергия (в первом приближении имеет вид дипольного взаимодействия).
Эффект орбитального взаимодействияU1 иU2 проявляющийся в случае изолированных атомов в образовании тонкой структуры спектральныхлиний приводит к появлению “внутренних магнитных полей” порядка105э. С другой стороны, “эквивалентное магнитное поле” анизотропии ферромагнетиков, определяемое величиной поля, при котором достигаетсянасыщение в монокристалле вдоль труднейших направлений намагничивания, оказывается порядка 102э и лишь в редких случаях(Со, пирротин) достигает 103—104э. Объяснение этого несоответствия заключается в том, что в отличие от атомов, где орбитальные моменты отличныот нуля (за исключением s-состоянии), в ферромагнитных кристаллах(например, в d-металлах и сплавах), как показывают измерения гиромагнитного эффекта, средний орбитальный магнитный момент по кристаллу почти всегда практически равен нулю. Поэтому в первом приближении эффект спин-орбитальных энергий U1 иU2также равен нулю. Отличный от нуля эффект получается лишь во втором и более высоких приближениях.
Что же касается спиновой части магнитного взаимодействияU3, которая хотя и дает отличный от нуля эффект в первом приближении, но темне менее не обеспечивает наблюдаемый на опыте порядок величины эффективных “полей” благодаря своей малости .
Несмотря на отсутствие законченной квантовой трактовки магнитного
взаимодействия в ферромагнетиках, в этой области имеются известные
успехи. Так, например, удалось объяснить правильный порядок величины констант магнитной анизотропии. В частности, без всяких дополнительных соображений из теории следует, что в кубических кристаллах (Fe,Ni) константы анизотропии должны быть меньше по абсолютнойвеличине, чем в случае гексагональных кристаллов (Со, пирротин). Этовытекает из свойств симметрии кубических кристаллов, в которых первоеприближение для дипольной энергииU3 и второе приближение для орбитальных энергийU1 иU2не приводит к зависимости свободной энергиикристалла от ориентации его намагниченности относительно кристаллографических осей. Для получения этой зависимости надо рассматриватьследующие приближения, в то время как в гексагональных решетках анизотропия получается и в первом приближении дляU3, и во второмдля U1 иU2.
Остановимся несколько подробнее на микромеханизме явления естественной кристаллографической магнитной анизотропии. Поскольку
в создании самопроизвольной намагниченности ферро- и антиферромагнетиков основную роль играют электронные спины, то микроскопическаяэнергия, ответственная за магнитную анизотропию, должна зависеть отсостояния этих спинов в кристалле, а также отражать симметрию распределения спиновой и зарядовой (орбитальной) плотности в кристалле. Наиболее простым является механизм магнитного дипольного взаимодействия спинов.
К сожалению, однако, учет лишь дипольного межэлектронного взаимодействия не может, как правило, объяснить наблюдаемую на опытевеличину энергии магнитной анизотропии.
Другой из упомянутых выше механизмов заключается в связи между
спином и орбитальным движением электронов [например, описываемой
членамиU1 иU2 гамильтониана (27)].
Киттель дает следующее наглядное объяснение физического механизма магнитной анизотропии из-за спин-орбитальной связи.
В основу своего объяснения они кладут общепризнанное положение, что, само появление этой анизотропии обусловлено совместным действием спин-орбитальной связи, частичного замораживания орбитальных моментов неоднородными кристаллическими полями и орбитальным обменным взаимодействием соседних атомов. Таким образом, самопроизвольная намагниченность кристалла “чувствует” ионную решетку через орбитальное движение магнитных электронов. Спины, участвующие в намагниченности, взаимодействуют с орбитальным движением с помощью спин-орбитальнойсвязи, а орбитальное движение связано с решеткой
полем лигандов.
Микроскопическая энергия, возникающая благодаря этому механизму, может быть в свою очередь двух типов:
1) спин-орбитальная связь, которая зависит от спиновых состояний
двух или более ионов-носителей магнитного момента (парная модель
магнитной анизотропии);
2) связь, зависящая от спинового состояния только отдельных ионов
(одноионная модель магнитной анизотропии). Последний механизм оказывается наиболее близким к реальной ситуации, которая имеет место в неметаллических антиферро - и ферримагнетиках, в которых магнитноактивные ионы находятся в окружении магнитно-нейтральных анионов. Под действием поля лигандов, симметрия которого определяется типом кристалла, происходит расщепление уровней магнитного иона. В результате основному состоянию в зависимости от структуры кристаллической решетки будут соответствовать различные типы уровней, что приводит к магнитной анизотропии кристалла с магнитным порядком.
§ 3.Магнитострикция при техническом намагничивании
Известно, что в процессе технического намагничивания происходит смещение границ доменов и вращение вектораIs. Рассмотрим, как эти процессы влияют на изменение длины кристалла с положительной константой магнитной анизотропииK1.
Пусть внешнее магнитное поле параллельно оси [110] и в исходном состоянии объемыVi доменов, намагниченных вдоль шести направлений легкого намагничивания, равновелики: V0100= V0I00 =V00I0 =V0001 =V00I 0 =V000I =1/6 V, где V – объем кристалла.
а) Смещение 180° доменных границ. При этом домены, намагниченные вдоль направлений [100] и_{010], поглощаются доменами,намагниченными в направлениях [100] и [010]. Изменения длины при смещении 180° доменных границ не происходит.
После того как смещение этих границ заканчивается, объемы
доменов равны