Частицы, образовавшиеся из небольшого числа атомов серебра, называют скрытым изображением, подчеркивая этим, что они составляют особое изображение, обнаруживающее себя не впрямую, а лишь своей способностью вызвать образование видимого изображения, предшествовать ему. Однако если экспонирование продолжать и после того, как образовалось скрытое изображение, постепенна и без проявления возникнет видимое глазом почернение, хотя, и слабое; его называют прямым почернением. Для практических целей такой способ получения изображения негоден, но он важен как одно из доказательств серебряной природы скрытого изображения: поскольку переход, от скрытого изображения, к прямому почернению идет постепенно и непрерывно, то, следовательно, оба они возникают за счет одних и тех же процессов с одними и теми же конечными продуктами. Впрочем, последнее утверждение требует некоторых оговорок.
Правильно то, что реакция, ведущая к образованию скрытого изображения и прямого почернения, одна и та же. Правильно также, что конечные продукты в обоих случаях ведут себя одинаково по отношению к ряду химических реагентов, например окислителей (отбеливателей), и притом именно так, как должно вести себя серебро. Однако их химическое тождество прослеживается не во всем: так, кусок металлического серебра, даже малый, катализатором реакции восстановления не служит, а скрытое изображение служит. Причиной этого и некоторых других различий надо считать, что скрытое изображение, хотя и состоит из атомов серебра, металлом .в общепринятом смысле не является: для металла характерны кристаллическая решетка, металлическая проводимость (движение свободных электронов, принадлежащих ие отдельному атому, а кристаллу в целом) и ряд других свойств, которыми скрытое -изображение не обладает. Его относят к так называемым кластерам, т. е. малым группам атомов (не более нескольких сотен), в которых каждый атом в целом и его электроны не до конца потеряли свою индивидуальность и обладают известной независимостью поведения по отношению ко всем остальным атомам и электронам, причем индивидуальные отклонения от средних свойств коллектива тем больше, чем меньше кластер. Поэтому отрыв электрона от атома в кластере требует иной затраты энергии, чем в металлической частице — это доказывается сравнением опытных данных о работе выхода фотоэффекта в кластере и в металле. Имеются и другие подтверждения кластерного характера скрытого изображения.
Раньше мы имели случай отметить, что отложение серебра при освещении кристаллов галогенида серебра происходит неравномерно, почти исключительно в местах сильного нарушения решетки. Хотя непосредственно увидеть, где скрытое изображение отложилось, нельзя, но уже давно было замечено, что проявление (а оно требует присутствия катализатора, т. е. скрытого изображения) начинается всегда лишь в немногих точках микрокристаллов фотоэмульсии, причем число и расположение этих мест определяется условиями химического созревания. Как читатель помнит, во время созревания формируется определенный вид нарушений решетки (примесные включения) и поэтому можно думать, что именно эти предумышленные нарушения служат местами отложения скрытого изображения, а значит, и катализа проявления. Не будем описывать соответствующие опыты, потребовавшие утомительного счета мест проявления и сложной статистической обработки результатов счета; укажем лишь то, что из них следует совершенно определенно: скрытое изображение отлагается не повсеместно, а преимущественно в местах нарушения решетки, причем главнейшими из них являются как раз примесные включения. Значит, чтобы объяснить, как идет образование скрытого изображения, необходимо иметь объяснение и концентрирования фотохимически образовавшегося серебра в отдельных местах. Что касается галогена, он выделяется со всей поверхности кристалла, и нужно иметь объяснение, почему это не совершается только в отдельных точках поверхности.
Заслуживает серьезного внимания и такой вопрос: если серебро отлагается на поверхности, а выделение галогена тоже идет через поверхность, то. почему не происходит обратная реакций между серебром и галогеном, ведущая к воссозданию галогенида серебра, т. е. “стиранию” продуктов прямой реакции. Здесь исключительно важным - оказалось присутствие желатины: прямые опыты показали, что желатина в фотоэмульсии выполняет еще одну очень важную функцию—связывание (обычно говорят “акцептирование”) фотолитического галогена, особенно брома, причем связанный галоген лишается подвижности и становится неспособным к реакция с фотолитическим серебром. Хорошей иллюстрацией к этому может служить снимок на рис. 12. Отметим, что в крупных монокристаллах галогенида серебра, поверхность которых ничем не защищена, .роль обратной реакции оказывается значительной,, чем еще больше снижается и без того низкая светочувствительность таких кристаллов.