Смекни!
smekni.com

Структурная надежность систем (стр. 8 из 10)

Для построения зависимостей вероятностей безотказной работы от времени для модернизированной системы по первому и второму методу удобно дополнить ранее составленную таблицу соответствующими строками. Графики этих зависимостей следует изобразить совместно с кривой P(t) исходной системы.

Полученное семейство кривых позволяет провести сравнение двух вариантов модернизации, которое следует привести в качестве вывода к работе.

Пояснительная записка должна быть оформлена в соответствии с СТП КрПИ 3.1- 92 “Текстовые документы. Требования к оформлению”. Все действия и использование расчетных сотношений должны быть объяснены и обоснованы.Для заимствуемой информации (формулы, численные значения констант) необходимо указать источник заимствования.

Задания на курсовую работу приведены в разд. 6, а в разд. 7 - пример расчета надежности.

6. ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ

По структурной схеме надежности технической системы в соответствии с вариантом задания, требуемому значению вероятности безотказной работы системы

и значениям интенсивностей отказов ее элементов
(табл. 6.1) требуется:

1. Построить график изменения вероятности безотказной работы системы от времени наработки в диапазоне снижения вероятности до уровня 0.1 - 0.2.

2. Определить

- процентную наработку технической системы.

3. Обеспечить увеличение

- процентной наработки не менее, чем в 1.5 раза за счет:

а) повышения надежности элементов;

б) структурного резервирования элементов системы.

Все элементы системы работают в режиме нормальной эксплуатации (простейший поток отказов). Резервирование отдельных элементов или групп элементов осуществляется идентичными по надежности резервными элементами или группами элементов. Переключатели при резервировании считаются идеальными.

На схемах обведенные пунктиром m элементов являются функционально необходимыми из n параллельных ветвей.

7. ПРИМЕР РАСЧЕТА НАДЕЖНОСТИ

Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в

1/ч.

1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что

, получим

. (7.1)

2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что

, получим

. (7.2)

3. Элементы 6 и 7 в исходной схеме соединены последовательно.Заменяем их элементом С, для которого при

. (7.3)

4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при

, получим

. (7.4)

5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е , причем, так как

, то

(7.5)

6. Элементы 12 , 13 , 14 и 15 образуют соединение “2 из 4”,которое заменяемэлементомF.Таккак

,то для определения вероятности безотказной работы элемента F можно воспользоваться комбинаторным методом (см. раздел 3.3):

(7.6)

7. Преобразованная схема изображена на рис. 7.2.

8. Элементы A,B,C,D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С.Тогда

(7.7)

где

- вероятность безотказной работы мостиковой схемы при абсолютнонадежномэлементеС(рис. 7.3,а),
- вероятность безотказной работы мостиковой схемы при отказавшем элементе С (рис. 7.3,б).

Учитывая, что

, получим

(7.8)

9.После преобразований схема изображена на рис. 7.4.

10.В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы

(7.9)

11.Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работыэлементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону:

(7.10)

12.Результаты расчетов вероятностей безотказной работы элементов 1 - 15 исходной схемы по формуле (7.10) для наработки до

часовпредставлены в таблице 7.1.

13.Результаты расчетов вероятностей безотказной работы квазиэле-ментов A, B, C,D,E, F и G по формулам (7.1) - (7.6) и (7.8) также представлены в таблице 7.1.

14.На рис. 7.5 представлен график зависимости вероятности безотказной работы системы P от времени (наработки) t.

15.По графику (рис.7.5, кривая P) находим для

- процентную наработку системы
ч.

16. Проверочный расчет при

ч показывает (таблица 7.1), что
.

17. По условиям задания повышенная

- процентная наработка сис-темы
ч.

Таблица 7.1

Расчет вероятности безотказной работы системы

Элемент l i, Наработка t, x 106 ч
x10-6 ч-1 0,5 1,0 1,5 2,0 2,5 3,0 1,9 2,85
1 0,001 0,9995 0,9990 0,9985 0,9980 0,9975 0,9970 0,9981 0,9972
2 - 5 0,1 0,9512 0,9048 0,8607 0,8187 0,7788 0,7408 0,8270 0,7520
6,7 0,01 0,9950 0,9900 0,9851 0,9802 0,9753 0,9704 0,9812 0,9719
8 - 11 0,2 0,9048 0,8187 0,7408 0,6703 0,6065 0,5488 0,6839 0,5655
12 - 15 0,5 0,7788 0,6065 0,4724 0,3679 0,2865 0,2231 0,3867 0,2405
A, B - 0,9976 0,9909 0,9806 0,9671 0,9511 0,9328 0,9701 0,9385
C - 0,9900 0,9801 0,9704 0,9608 0,9512 0,9417 0,9628 0,9446
D, E - 0,9909 0,9671 0,9328 0,8913 0,8452 0,7964 0,9001 0,8112
F - 0,9639 0,8282 0,6450 0,4687 0,3245 0,2172 0,5017 0,2458
G - 0,9924 0,9888 0,9863 0,9820 0,9732 0,9583 0,9832 0,9594
P - 0,9561 0,8181 0,6352 0,4593 0,3150 0,2075 0,4923 0,2352
12` - 15` 0,322 0,8513 0,7143 0,6169 0,5252 0,4471 0,3806 0,5424 0,3994
F` - 0,9883 0,9270 0,8397 0,7243 0,6043 0,4910 0,7483 0,5238
P` - 0,9803 0,9157 0,8270 0,7098 0,5866 0,4691 0,7343 0,5011
16 - 18 0,5 0,7788 0,6065 0,4724 0,3679 0,2865 0,2231 0,3867 0,2405
F`` - 0,9993 0,9828 0,9173 0,7954 0,6413 0,4858 0,8233 0,5311
P`` - 0,9912 0,9708 0,9034 0,7795 0,6226 0,4641 0,8079 0,5081

Рис 7.5. Изменение вероятности безотказной работы исходной системы (Р), системы с повышенной надежностью (Р`) и системы со структурным резервированием элементов (Р``).