Для построения зависимостей вероятностей безотказной работы от времени для модернизированной системы по первому и второму методу удобно дополнить ранее составленную таблицу соответствующими строками. Графики этих зависимостей следует изобразить совместно с кривой P(t) исходной системы.
Полученное семейство кривых позволяет провести сравнение двух вариантов модернизации, которое следует привести в качестве вывода к работе.
Пояснительная записка должна быть оформлена в соответствии с СТП КрПИ 3.1- 92 “Текстовые документы. Требования к оформлению”. Все действия и использование расчетных сотношений должны быть объяснены и обоснованы.Для заимствуемой информации (формулы, численные значения констант) необходимо указать источник заимствования.
Задания на курсовую работу приведены в разд. 6, а в разд. 7 - пример расчета надежности.
6. ИСХОДНЫЕ ДАННЫЕ К РАБОТЕ
По структурной схеме надежности технической системы в соответствии с вариантом задания, требуемому значению вероятности безотказной работы системы
и значениям интенсивностей отказов ее элементов (табл. 6.1) требуется:1. Построить график изменения вероятности безотказной работы системы от времени наработки в диапазоне снижения вероятности до уровня 0.1 - 0.2.
2. Определить
- процентную наработку технической системы.3. Обеспечить увеличение
- процентной наработки не менее, чем в 1.5 раза за счет:а) повышения надежности элементов;
б) структурного резервирования элементов системы.
Все элементы системы работают в режиме нормальной эксплуатации (простейший поток отказов). Резервирование отдельных элементов или групп элементов осуществляется идентичными по надежности резервными элементами или группами элементов. Переключатели при резервировании считаются идеальными.
На схемах обведенные пунктиром m элементов являются функционально необходимыми из n параллельных ветвей.
7. ПРИМЕР РАСЧЕТА НАДЕЖНОСТИ
Структурная схема надежности приведена на рис 7.1. Значения интенсивности отказов элементов даны в
1/ч.1. В исходной схеме элементы 2 и 3 образуют параллельное соединение. Заменяем их квазиэлементом А. Учитывая, что
, получим . (7.1)2. Элементы 4 и 5 также образуют параллельное соединение, заменив которое элементом В и учитывая, что
, получим . (7.2)3. Элементы 6 и 7 в исходной схеме соединены последовательно.Заменяем их элементом С, для которого при
. (7.3)4. Элементы 8 и 9 образуют параллельное соединение. Заменяем их элементом D, для которого при
, получим . (7.4)5. Элементы 10 и 11 с параллельным соединением заменяем элементом Е , причем, так как
, то (7.5)6. Элементы 12 , 13 , 14 и 15 образуют соединение “2 из 4”,которое заменяемэлементомF.Таккак
,то для определения вероятности безотказной работы элемента F можно воспользоваться комбинаторным методом (см. раздел 3.3): (7.6)7. Преобразованная схема изображена на рис. 7.2.
8. Элементы A,B,C,D и Е образуют (рис. 7.2) мостиковую систему, которую можно заменить квазиэлементом G. Для расчета вероятности безотказной работы воспользуемся методом разложения относительно особого элемента (см. раздел 3.4), в качестве которого выберем элемент С.Тогда
(7.7)где
- вероятность безотказной работы мостиковой схемы при абсолютнонадежномэлементеС(рис. 7.3,а), - вероятность безотказной работы мостиковой схемы при отказавшем элементе С (рис. 7.3,б).Учитывая, что
, получим (7.8)9.После преобразований схема изображена на рис. 7.4.
10.В преобразованной схеме (рис. 7.4) элементы 1, G и F образуют последовательное соединение. Тогда вероятность безотказной работы всей системы
(7.9)11.Так как по условию все элементы системы работают в периоде нормальной эксплуатации, то вероятность безотказной работыэлементов с 1 по 15 (рис. 7.1) подчиняются экспоненциальному закону:
(7.10)12.Результаты расчетов вероятностей безотказной работы элементов 1 - 15 исходной схемы по формуле (7.10) для наработки до
часовпредставлены в таблице 7.1.13.Результаты расчетов вероятностей безотказной работы квазиэле-ментов A, B, C,D,E, F и G по формулам (7.1) - (7.6) и (7.8) также представлены в таблице 7.1.
14.На рис. 7.5 представлен график зависимости вероятности безотказной работы системы P от времени (наработки) t.
15.По графику (рис.7.5, кривая P) находим для
- процентную наработку системы ч.16. Проверочный расчет при
ч показывает (таблица 7.1), что .17. По условиям задания повышенная
- процентная наработка сис-темы ч.Таблица 7.1
Расчет вероятности безотказной работы системы
Элемент | l i, | Наработка t, x 106 ч | ||||||||||
x10-6 ч-1 | 0,5 | 1,0 | 1,5 | 2,0 | 2,5 | 3,0 | 1,9 | 2,85 | ||||
1 | 0,001 | 0,9995 | 0,9990 | 0,9985 | 0,9980 | 0,9975 | 0,9970 | 0,9981 | 0,9972 | |||
2 - 5 | 0,1 | 0,9512 | 0,9048 | 0,8607 | 0,8187 | 0,7788 | 0,7408 | 0,8270 | 0,7520 | |||
6,7 | 0,01 | 0,9950 | 0,9900 | 0,9851 | 0,9802 | 0,9753 | 0,9704 | 0,9812 | 0,9719 | |||
8 - 11 | 0,2 | 0,9048 | 0,8187 | 0,7408 | 0,6703 | 0,6065 | 0,5488 | 0,6839 | 0,5655 | |||
12 - 15 | 0,5 | 0,7788 | 0,6065 | 0,4724 | 0,3679 | 0,2865 | 0,2231 | 0,3867 | 0,2405 | |||
A, B | - | 0,9976 | 0,9909 | 0,9806 | 0,9671 | 0,9511 | 0,9328 | 0,9701 | 0,9385 | |||
C | - | 0,9900 | 0,9801 | 0,9704 | 0,9608 | 0,9512 | 0,9417 | 0,9628 | 0,9446 | |||
D, E | - | 0,9909 | 0,9671 | 0,9328 | 0,8913 | 0,8452 | 0,7964 | 0,9001 | 0,8112 | |||
F | - | 0,9639 | 0,8282 | 0,6450 | 0,4687 | 0,3245 | 0,2172 | 0,5017 | 0,2458 | |||
G | - | 0,9924 | 0,9888 | 0,9863 | 0,9820 | 0,9732 | 0,9583 | 0,9832 | 0,9594 | |||
P | - | 0,9561 | 0,8181 | 0,6352 | 0,4593 | 0,3150 | 0,2075 | 0,4923 | 0,2352 | |||
12` - 15` | 0,322 | 0,8513 | 0,7143 | 0,6169 | 0,5252 | 0,4471 | 0,3806 | 0,5424 | 0,3994 | |||
F` | - | 0,9883 | 0,9270 | 0,8397 | 0,7243 | 0,6043 | 0,4910 | 0,7483 | 0,5238 | |||
P` | - | 0,9803 | 0,9157 | 0,8270 | 0,7098 | 0,5866 | 0,4691 | 0,7343 | 0,5011 | |||
16 - 18 | 0,5 | 0,7788 | 0,6065 | 0,4724 | 0,3679 | 0,2865 | 0,2231 | 0,3867 | 0,2405 | |||
F`` | - | 0,9993 | 0,9828 | 0,9173 | 0,7954 | 0,6413 | 0,4858 | 0,8233 | 0,5311 | |||
P`` | - | 0,9912 | 0,9708 | 0,9034 | 0,7795 | 0,6226 | 0,4641 | 0,8079 | 0,5081 |