Смекни!
smekni.com

Геометрическая теория строения материи (стр. 3 из 4)

Ребра Пи – 0 и Пи +\- мезонов имеют одно общее число =5. Грани их представляют собой трех и четырехугольники. Предположим, что общая часть нуклонов- есть многогранник, составленный из правильных треугольников и квадратов со стороной = 5.

Рисунок 5. Гедра

Из полуправильных многогранников этим условиям отвечает так называемая “Гедра”. Объем ее со стороной а определяется как сумма составляющих объемов.

V = a3 + 6*a3* √2+ 8* a3/(6*2*√2) +6* a3/2 (10)

При стороне а = 5, V = 1089,26;

Добавив к Гедре шесть кубов со стороной а=5 , получим следующую структуру.

Объем такой структуры определится как :

V = 7* a3 + 6*a3* √2+ 8* a3/(6*2*√2) +6* a3/2 (11)

При стороне а = 5, V = 1839,26; В данном случае, мы имеем частицу - протон, окруженную кубиками - виртуальными Пи+ мезонами. Стать полноценными мезонами им не позволяет размер, т.е. масса.

Рисунок 6. Протон

Масса нейтрона в свободном состоянии, как известно, больше массы протона. Простейший анализ атомарных весов по таблице периодической системы Д.И.Менделеева показывает, что в связанном состоянии – в ядре – масса нейтрона меньше массы протона и составляет 0,98÷0,99 от массы протона. При этом масса протона в ядре не меняется.

Попробуем объяснить, каким образом нуклоны связанны в ядре в единое целое, оставаясь при этом отдельными частицами. Если нуклоны в ядре имели бы соприкосновение вершинами, то такое соединение. видимо не имело бы большой жесткости, если же гранями, то можно предположить вероятность их “схлопывания” в одну частицу, или каким-то образом изменения их свойств. Жесткая конструкция, при сохранении собственной структуры, получается, если нуклоны имеют связь в ядре путем объединения ребер. Поскольку выступающие части многогранника – протона представляющие собой кубы, расположены под углом 90 градусов, то ответные грани выступающих частей нейтрона должны быть расположены так же. У Пи-0 мезонов, виртуально окружающих нейтрон, имеются грани – треугольники со стороной (?)=5. Видимо и соединение выступающих частей нейтрона приходится на грани треугольной формы.

Минимальное количество ребер необходимых для жесткого соединения двух многогранников (нуклонов) равно двум. Треугольных граней на Гедре – 8. Необходимо ли всем им иметь выступающие части? Нет, достаточно всего четырех, расположенных по вершинам вписанного в Гедру тетраэдра. Стороны такой усеченной пирамиды расположены под углами 90 º друг к другу, а внешняя сторона - правильный треугольник.

Рисунок 7. Нейтрон в ядре

При этом со всех шести сторон к нейтрону может быть присоединен протон двумя ребрами. Масса такой частицы определится как :

V = 7* a3 + 6*a3* √2+ 8* a3/(6*2*√2) +6* a3/2 + 4*( b3 –(a*√2)3)/6 . (12)

Здесь b = 10,5*√2; где 10,5 – длина грани от основания пирамиды со стороной b до вершины, спрятанной внутри Гедры. При а = 5, b=10,5 для нейтрона в ядре имеем:

V нейтр.связ.= 1831,54

В свободном состоянии, видимо, усеченные пирамиды будут стремиться к форме усеченного тетраэдра.

Рисунок 8. Усеченный тетраэдр

Объем усеченного теораэдра равен:

Vтетр.ус. =(√2)/12 * a3 - (√ 2)/12 * b3: (13)

Приняв а = 12, b = 5, получим объем пирамиды (виртуального Пи-0 мезона) для нейтрона в свободном состоянии:

V ус.тетр.= (√2)/12 * a3 1 (√ 2)/12 * b3 (14)

V ус.тетр.= 185,57

Масса нейтрона тогда определится как ;

V = a3 + 6*a3* √2+ 8* a3/(6*2*√2) +6* a3/2-(√2)/12 * a3 + (√ 2)/12 * b3 (15)

V нейтр. своб.= 1844,92

Сведем полученные результаты в таблицу.

Таблица 4. Нуклоны

№п\п Вид частицы Вид многогранника ДлинаРебра Масса э.м. Объем Погрешность
1 Протон Гедра + 6 кубов 5 1836,14 1839,26 0,169 %
2 Нейтрон сободный Гедра + 4 ус.пирамиды 90 º 5+7(10,5) 1838,69 1844,92 0,339 %
3 Нейтрон в ядре Гедра + 4 ус.пирамиды 60 º 5+7(12) 1824,02 1831,54 0,412 %

Согласно предлагаемой гипотезе, нуклоны в ядре будут связаны ребрами. При этом длина ребра усеченной пирамиды нейтрона, отходящей от Гедры, составляет около 7. Это на 2 больше, чем длина ребра выступающего куба протона. Таким образом, крайняя плоскость куба протона не достанет до Гедры нейтрона, и обе частицы сохранят свою структуру.

При распаде ядра, нейтрон оставляет четыре усеченные пирамиды, но они изменяют форму - превращаются в усеченные тетраэдры. Поскольку масса свободного нейтрона больше массы протона, то усеченные пирамиды опять преобразуются в кубы, и получается протон. При этом излишек вещества и отрицательный электрический заряд уносятся электроном и электронным нейтрино.

При разбивании протона в ускорителе о мишень он и частицы мишени распадаются на части - многогранники, ребра которых кратны длине ребра электрона. Поэтому массы получающихся частиц не образуют сплошной спектр значений, а подчинены определенной закономерности.

Тот факт, что все элементарные частицы в конечном счете (путем цепочек распада) превращаются (принимают форму) в правильные многогранники, или многогранники из них составленные, позволяет дополнить гипотезу следующим утверждением :

Тела Платона являются первичными элементарными формами, из которых состоят (частично или полностью) элементарные частицы. Форма неправильного многогранника частицы (или его частей) стремится принять форму тела Платона. Форма хотя бы одного из многогранников частиц получаемых при распаде, более близка к форме тел Платона, чем исходная частица.

Автор не берется пока объяснить, что именно является определяющим: свойства собственно “элементарной” частицы, плоскости граней, ребра или вершины.

Возможно, что вышеприведенное дополнение к гипотезе надо свести к не форме самого многогранника, а к виду его граней. Возможно, что ребра представляют собой некие струны – свертки пространства. Возможно, основой частицы (определяющей форму) является ее некий узел симметрии, который надо считать истинно “элементарным”. Все это требует дальнейшего осмысления.

Автор прекрасно понимает, что предложенная теория якобы противоречит общепринятому “дуализму” частиц. Поскольку частица с жестким объемом и структурой не укладывается в понятие “волна”. Все это справедливо, только если принять движение частицы математически непрерывным в каждой точке пространства с заданным жестким объемом. Под понятием точки, здесь понимается именно математическое определение, при котором расстояние между точками исчезающее мало, но не равно нулю. Но мы живем в реальном, а не математическом пространстве. В нем же движутся и элементарные частицы.

Давайте разберемся, что же это за “волновые” свойства. Во-первых, сам термин появился, когда допускалось существование некоего “эфира”, по которому распространялись световые “волны”. Во многом, сам термин обязан своему появлению эффекту дифракции, который объяснялся физиками чисто математически сложением неких волн- синусоид. С открытием фотона – с его корпускулярными свойствами, т.е. поведением его как частицы, при поглощении и испускании, ему же были переданы и волновые свойства световой волны, проявляющиеся при распространении. Так родился корпускулярно-волновой дуализм с оговоркой, что волновые свойства проявляются только при движении частиц.

В качестве объяснения проявления волновых свойств частиц, не противоречащих предложенному “геометрическому” устройству частиц, возможны как минимум два варианта.

Первый - “ячеистая” структура вакуума, где частицы могут находиться только в определенных “квантованных” местах пространства, “перескакивая” из одной ячейки в другую. В пользу такого объяснения говорит и наличие “туннельного” эффекта. При этом для осуществления движения необходима дополнительная кинетическая энергия.

Второй- это “осцилляция” самой частицы, то есть, “схлопывание” ее объема в точку ближайшей вершины, находящуюся по вектору движения частицы, и развертывание ее далее в полный объем на другом месте из этой же точки. Данное предположение ничем не экзотичнее корпускулярно-волнового дуализма.

Если при этом учесть вращение частицы (спин), то становится ясно, каким образом частица может двигаться в любом направлении трехмерного пространства. При этом вектор движения частицы, т.е. приложенная ей энергия движения, “размазывает” частицу (точнее ее осцилляции) в пространстве, образовывая “Волну де Бройля”.

Рисунок 9. Последовательные фазы осцилляции фотона

Так эффекты дифракции и интерференции можно объяснить, если считать светлые и темные полосы, видимые как результат попадания квантов света, не результатом сложения неких волн - синусоид, а как наглядно проявляемое распределение количества попадания фотонов (частиц) в определенные области пространства. Где-то густо (ярко), а где-то пусто (темно). Дифракция, как известно, наблюдается при прохождении волны (частицы) мимо края препятствия. При этом для наблюдения эффекта дифракции расстояние между частями препятствия должно быть сравнимо с длиной волны. При этом наблюдается краевой эффект. Но если принять хоть одно вышеприведенное объяснение “ячеистой” структуры вакуума, или “осцилляцию” частицы, то мы получим следующее:

1. Частицы, пролетающие вблизи от края препятствия, испытывают гравитационное притяжение к частицам препятствия. При этом вектор их движения получает смещение в сторону препятствия.