3. Полимерия. Многие признаки определяются несколькими парами генов. Это характерно, в основном, для количественных признаков, таких как яйценоскость у кур, жирность молока у коров. Впервые это явление было впервые установлено Г. Нильсоном-Эле, который изучал наследования окраски семян овса. В результате многократных скрещиваний он получил семена, чей цвет варьировался от желтого до черного через промежуточные оттенки серого разной интенсивности. Цвет семян определялся двумя парами генов. Доминантные гомозиготы по обеим парам имели черную окраску, а рецессивные гомозиготы - желтую. Промежуточные формы имели серую окраску, причем было установлена прямая зависимость интенсивности окраски от числа доминантных аллелей; так организмы с генотипом АаВв были темнее, чем с генотипом Аавв, но светлее, чем с генотипом ААВв.
Признак может определятся и более, чем двумя генами. Например, у человека интенсивность окраски кожи определяется несколькими парами генов. Было выдвинута теория, что цвет кожи зависит от пяти пар генов. Самая темная кожа (у негроидной расы) будет определятся генотипом ААВВССDDЕЕ, тогда как у мулата будут присутствовать рецессивные аллели, а у европеоидной расы генотип будет ааввссddее. Принцип полимерного наследования можно записать в виде неравенства:
ААВВСС<…<АаВвСс<…<ааввсс
4. Плейотропное действие гена. При плейотропном действии гена один ген определяет развитие или влияет на проявление нескольких признаков. Это свойство генов было хорошо исследовано на мышах. Из схемы, видно, что ген определяет несколько признаков и признак определяется несколькими генами, поэтому можно сделать вывод, что плейотропное действие гена неразрывно связано с полимерным взаимодействием генов.
Поподробнее можно рассмотреть действие одного гена на ряд признаков на примере карликовости у мышей. Карликовые мыши получились в результате мутации и их изучение началось в Гарвардском университете в 1929 году. При скрещивании фенотипически нормальных мышей ? были карликовыми, из чего был сделан вывод, что карликовось обусловлена рецессивным геном. Рецессивные гомозиготы прекращали расти на второй неделе, были неспособны к размножению, внутренние органы, особенно железы внутренней секреции, имели измененную форму, мыши были менее подвижны и плохо переносили перепады температур.
Ген карликовости определял ненормальное развитие гипофиза, который, в свою очередь, определял раннюю остановку роста (изменение пропорций тела), ненормальное развитие половых желез (следовательно, стерильность), ненормальное развитие щитовидной железы, которое определяло пониженный обмен веществ, поэтому карликовые мыши были чувствительны к холоду, но более стойкие к голоду. Это цепочка последовательного изменения признаков при дефекте только одного гена. Пример плейотропного действия гена у человека - наследование дефекта ногтей и дефекта коленной чашечки, за которое отвечает один ген.
5. Летальные гены. Летальность генов - одна из разновидностей плейотропного действия гена. Так один ген, определяющий какой-либо признак, влияет так же на жизнеспособность в целом.
Ярким примером летальности гена служит ген платиновости у лисиц. До 30-х годов ХХ века не было платиновых лисиц, а были только серебристые. Этот ген появился тогда в результате мутации. Платиновый мех вошел в моду и стал очень дорогим, поэтому перед селекционерами встала задача вывести породу платиновых лисиц, то есть вывести чистую линию платиновых лисиц. Было установлено, что ген платиновости - доминантный. Для получения чистой линии скрещивали платиновых лисиц, из которых, по закону Менделя, одна четверть должна быть гомозиготной по доминантному гену. Но при дальнейшем скрещивании потомков у них все равно встречались серебристые щенки, что свидетельствовало об их гетерозиготности. Усомниться в правильности второго закона Менделя было невозможно, поэтому стали искать другие причины. Оказалось, что соотношение платиновых щенков к серебристым было 2 к1, что тоже противоречило закону Менделя, но был установлен другой факт - у платиновых лисиц в помете было 3-4 лисят, тогда как норма - 4-5 лисят. Из этого было установлено, что доминантные гомозиготы погибают в период эмбрионального развития, поэтому выведение чистой линии оказалось невозможным. Ген, определяющий смертельное нарушение развития в эмбриональный период, называется летальным. Интересно заметить, что в гетерозиготном состоянии мутантный ген не приводил к летальным последствиям, тогда как проявлялся в гомозиготном, поэтому можно сделать вывод, что летальный ген рецессивный. Значит, плейотропный ген может быть одновременно и доминантным, и рецессивным по разным своим проявлениям (в данном случае рассматриваемый ген доминантный для окраски, но рецессивный для летальности. Летальность может также определятся доминантным геном, но в этом случае потомок погибает до рождения или в раннем детстве, поэтому не может иметь потомства и передать этот ген по наследству.
Помимо летальных генов существуют сублетальные гены, которые вызывают врожденные заболевания, ведущие к смерти в детстве до наступления половозрелости, хотя есть и исключения. Примером доминантного сублетального гена является ген, определяющий заболевание ретинобластомой, при котором в раннем детстве развивается раковая опухоль в глазу. Раньше это заболевание всегда приводило к смерти, а сейчас проводят операции, спасающие от смерти, но приводящие к слепоте на один или на оба глаза.
Модификационная изменчивость.
Модификационная изменчивость относится к ненаследственной изменчивости. Она отражает взаимодействие генотипа и среды. Под влиянием среды изменяется только фенотип, а генотип остается неизменным, поэтому модификационная изменчивость не наследуется. Модификационная изменчивость четко прослеживается у растений, так как они во многих случаях размножаются вегетативным путем, поэтому большое число организмов может обладать одинаковым генотипом. Рассмотрим модификационную изменчивость у картофеля. Все клубни одного растения имеют одинаковый генотип, однако клубни все разного размера и формы. Это объясняется тем, что условия их развития отличались: некоторые клубни получали больше воды или питательных веществ, другие меньше. Если же высадить клубни одного растения в разную почву, то и растения получатся разные: например, если высадить в благоприятную почву маленький клубень, а в скудную - большой, то в первом случае вырастет большое растение, а во втором - хилое, слабое растение небольших размеров, что еще раз подтверждает изменение фенотипа под влиянием среды.
У животных одинаковых генотипов не существует, за исключением случаев однояйцевых близнецов, имеющих абсолютно идентичные генотипы. Они представляют особенный интерес для исследования. Однояйцевые близнецы рождаются иногда у крупного рогатого скота, у свиней и овец, но случается это редко. Если однояйцевых близнецов свиньи кормить по разному, то рост и вес у них будет различным. Если же свиней с различными генотипами одинаково кормить, то окажется, что для каждой свиньи будут свои пределы, до которых она может прибавлять в весе. Эта граница называется нормой реакции, которая определяет диапазон изменения фенотипа под влиянием внешней среды. Норма реакции для каждого организма разная. Тогда как модификационная изменчивость не наследуется, норма реакции является наследственным признаком. Куры одной породы, имеющих определенную яйценоскость, будут передавать своим потомкам уровень своей яйценоскости, и даже при самых благоприятных условиях яйценоскость потомков не превысит яйценоскость родительских особей.
Модификационная изменчивость является важной для приспособления организмов к изменяющимся условиям. Она обладает следующими особенностями:
a) Модификационная изменчивость носит направленный характер и является адекватной реакцией организма на изменившиеся условия. На солнце у людей для защиты от вредного излучения не начинают, например, расти уши, а начинает вырабатываться пигмент меланин, кожа становиться темнее, т.е. организм адекватно прореагировал на изменившуюся среду.
b) Модификационная изменчивость в подавляющем большинстве случаев полезна. Она позволяет организму быстро приспособиться к изменяющимся условиям и выжить в них.
c) Модификационная изменчивость характерна для всего вида, а норма реакции для каждого организма индивидуальна. Изменение количества молока в зависимости от кормежки присуща всем коровам, но для каждой коровы размеры изменения удоя будут разными: одна корова может дать от 1000 до 2500 литров молока в год, а другая от 2500 до 5000.
d) Модификационная изменчивость обратима, т.е. фенотип изменяется только под воздействием некоторых внешних факторов, а когда они прекращают свое воздействие на организм, то внешний вид возвращается к первоначальному. Человек, загоревший на пляже и вернувшийся домой, перестает подвергаться воздействию солнечных лучей в большом количестве, поэтому фермент вырабатывается в меньших количествах и кожа постепенно светлеет.
e) Модификационная изменчивость характерна в основном для количественных признаков, а не для качественных. Например, вес человека зависит от его питания, подвижности и легко изменяется при изменении этих условий, но цвет глаз не изменится от того, что человек съел или от температуры на улице. Но некоторые признаки все же изменяются под влиянием среды. У сиамских котят цвет шерсти зависит от температуры: все котята рождаются светлыми, так как в эмбриональном периоде они находятся под воздействием высокой температуры, но в дальнейшем котята, растущие в более холодных условиях становятся темнее, чем котята, воспитывающиеся в тепле.