И один последний вопрос: как кладист отличает примитивные признаки от специализированных? Один из важных методов состоит в так называемом сравнении за пределами группы (out-groupcomparison). Если признаки сходства между видами в пределах рассматриваемой группы обнаруживаются также у видов, не принадлежащих к ней, то это скорее примитивные, чем специализированные признаки. Потенциально возможно провести сравнение обширнейшего ряда видов, а именно это мы подсознательно и проделываем, когда называем такие признаки, как многоклеточность, примитивными. Однако обычно имеет практический смысл в известной мере ограничить подобного рода исследования, и интуитивно наиболее разумный подход состоит в том, чтобы сравнивать виды, входящие в данную группу, с другими сходными видами, не относящимися к ней.
2. Фенетика (16, 17)
Биологи, принадлежащие к этой школе, считают, что объективно классифицировать организмы в соответствии с их генеалогией невозможно главным образом из-за невозможности твердо отличать гомологичные признаки от конвергентных. Вместо этого они концентрируют внимание на всех чертах сходства и пытаются на их основе (то есть на основе степени общего сходства) создать объективную систему классификации организмов. Они настаивают на том, что если учитывать достаточное число признаков, то гомологичные признаки будут преобладать над конвергентными. Однако гарантировать это apriori нельзя. Другие приверженцы фенетики утверждают, что они стремятся лишь к тому, чтобы создать удобные системы классификации, подобные тем, которыми пользуются в библиотеках для классификации книг, и что эти системы не обязательно должны отражать эволюционные взаимосвязи. Для проведения фенетического анализа (то есть оценки степени общего сходства) часто применяют хитроумные математические методы, выражая полученные результаты в виде фенограмм (рис. 5. 1Д).
3. Эволюционная систематика (13)
Рис. 5.1. А. Кладисты обычно исходят из допущения, что рассматриваемые виды связаны между собой так, как это показано на схеме /, но не так, как на схеме //. На схеме IIIпоказана кладограмма, основанная на последовательных ветвлениях. Вопросительный знак у оси времени стоит потому, что кладограммы можно интерпретировать по крайней мере двумя способами. Согласно одной интерпретации, они представляют собой эволюционные древеса, на которых предки точно не указаны, а поэтому вводится время (классическая кладистика); согласно другой — они изображают типы родственных взаимоотношений, а точки ветвления соответствуют синапо-морфным признакам, так что время не вводится (трансформированная кладистика). Классическую кладистику интересуют эволюционные процессы, а трансформированную — таксономические картины. Конечно, те и другие должны быть как-то связаны между собой, однако некоторые кладисты предпочитают не высказываться относительно точного характера этой связи. Б. Ступенчатое построение фенограммы. Буквы обозначают виды. Числа в матрицах — коэффициенты общего сходства (в диапазоне от 0 — отсутствие сходства до 1 — полное сходство), выведенные на основании всех измеренных признаков. На ступени / матрица содержит коэффициенты сходства для пяти видов. Построение фенограммы начинают с поиска основных пар (для каждого члена такой пары коэффициенты сходства максимальны). Эти основные пары соединяют на соответствующих уровнях оси, по которой отложены коэффициенты сходства. На ступени // каждая основная пара рассматривается как одна единица, и коэффициенты сходства здесь представляют собой средние по всем отдельным видам, то есть 0,575= (0,6+0,4+ + 0,7+0,6)/4. Здесь снова следует найти основные пары и произвести соответствующие соединения на схеме. На ступени /// продолжают и завершают эту процедуру (по LuriaS. Е. etal., A. ViewofLife, Benjamin, 1981). В. Филогенетическое древо, в котором сделана попытка учесть как последовательность ветвления (а тем самым сроки), так и степень дивергенции. Время обычно пытаются отложить как можно точнее на вертикальной оси; горизонтальная ось отражает дивергенцию обычно на основании субъективных оценок, а поэтому довольно неточно.
В эволюционной систематике классификация основана на сочетаний генеалогии и степени общего сходства и различия, отражающего уровень дивергенции. Никаких объективных правил для этого не существует, и принятие того или иного решения в значительной мере зависит от опыта систематиков в оценке относительной значимости различных критериев. Полученные результаты представляют в виде филогенетических древес (рис. 5.1.В).
Некоторые из различий, существующих между этими школами, можно проиллюстрировать на следующих примерах, относящихся к птицам и рептилиям. Как птицы, так и крокодилы происходят от общей предковой группы архозавров, в которую входили динозавры. Какая-то еще более древняя рептилия была общим предком черепах, ящериц и змей, крокодилов и птиц. Поэтому у птиц и крокодилов больше общих признаков, чем у крокодилов и других ныне существующих рептилий.
Однако после того, как птицы отделились от общего ствола, они развивались быстрее, чем крокодилы, и теперь они обладают рядом чрезвычайно своеобразных признаков — способностью к полету, перьевым покровом, гомойотермностью и т. п. Поскольку птицы сильнее дивергировали от предкового ствола, чеш крокодилы, эволюционные систематики отделяют их от всех других рептилий и помещают в отдельный класс — Aves, a всех остальных ныне существующих рептилий, в том числе крокодилов, объединяют в класс Reptilia (рис. 5.1,Б). Фенетики строят аналогичную систему на основе морфологического сходства. Что же касается кладистов, то они при построении систем классификации строго придерживаются генеалогического родства, и поэтому в их кладограммах птицы связаны с крокодилами более тесным родством, чем крокодилы — с черепахами, змеями и ящерицами.
Итак, подводя итоги, можно сказать, что какого-то оптимального способа построения биологической системы классификации, которая отражала бы эволюционные связи, по-видимому, не существует. Кладисты строят ее объективно на основе одной лишь генеалогии, но пренебрегают важными сведениями о дивергенции. Фенетики строят ее объективно, основываясь на сходствах, но неизбежно путают при этом гомологичные и конвергентные признаки. Представители эволюционной систематики пытаются учитывать одновременно и генеалогию, и дивергенцию, но не могут делать это вполне объективно.
Однако независимо от того, какой мы придерживаемся методологии, производя отбор групп однородных таксонов, следует найти их место в линнеевской иерархии, то есть возвести их в определенный ранг, как, например, отряд или семейство. Кладисты часто вводят новый ранг после каждой точки ветвления в кла-дограмме. Эволюционные систематики, однако, судят о ранге таксонов по степени их дивергенции от общего предка, нередко приписывая разные ранги сестринским группам. Определение ранга — процесс крайне субъективный, а поэтому он вызывает многочисленные разногласия и подвержен всевозможным изменениям и уточнениям.
5.3. Как образуются таксоны — неодарвинистская точка зрения, или синтетическая теория эволюции.
Так называемая синтетическая теория эволюции пытается объяснить происхождение таксономического разнообразия, то есть макроэволюционные явления, с точки зрения принципов неодарвинизма, то есть микроэволюционных процессов. Важными вехами такого подхода служат книги Добржанского (4), Хаксли (8), Майра (12) и Симпсона (15).
Синтетическая теория строит свое объяснение видообразования, на основных принципах неодарвинизма, а именно:
1) источником изменчивости служат точковые мутации, в особенности мутации структурных генов;
2) эволюционное изменение представляет собой результат изменения частоты генов;
3) направление этих изменений частоты определяется естественным отбором.
Таким образом, традиционно считается, что популяции некоего вида становятся физически изолированными, после чего обмен генами между ними прекращается. В результате этой изоляции возникают группы, представляющие собой более или менее случайные выборки из первоначального генофонда. Возможно также возникновение неслучайных выборок, как, например, в случае эффекта основателя, однако, согласно приверженцам синтетической теории, это бывает редко. Изоляты становятся адаптированными к тем условиям, в которых они оказались, так что их генные частоты начинают различаться, и в конце концов популяции оказываются настолько разными, что даже в случае разрушения изолирующих преград скрещивание между ними становится невозможным — иными словами, они превращаются в настоящие виды (рис. 5.2). Решающим моментом для подобного процесса видообразования служит возникновение изоляции, за которым следуют медленные и постепенные изменения. Это схематически показано на рис. 5.2.
Интерпретация видообразования, как процесса постепенного, сталкивается с двумя проблемами: одна из них носит фактический характер, а другая —логический. Что касается фактов, то в палеонтологической летописи часто нельзя обнаружить постепенных изменений. Многие виды, казалось бы, остаются неизменными на протяжении миллионов лет, а затем внезапно исчезают, сменяясь какими-то другими формами, существенно отличающимися от прежних, но явно родственными им. Хорошим примером служит группа пресноводных моллюсков из поздне-кайнозойских отложений озера Туркана, на севере Кении, описанная Уильямсом (21). Как показали проведенные измерения, за последние 5 млн. лет популяции 16 видов изменялись весьма незначительно. Однако у 5 видов, мало изменявшихся в течение почти всего этого времени, обнаружены очень быстрые изменения за периоды, равные примерно 50 000 лет. Со стороны логики можно привести то, что Майварт (Mivart) назвал дилеммой стадии зарождения полезных структур. Если эволюция структур происходит постепенно, то какое значение имеют структуры с промежуточными признаками? Какую пользу, например, может принести рептилии частично сформированное крыло (см. также разд. 1.5.)?