Высота развития облака - 100 - 700 км.
Характерные размеры - 100 - 1000 км.
Время жизни образования1 – 10 минут.
Наблюдаемый спектр - непрерывный.
Регистрируемые яркостидо 10 –4 сб.
Состав облака - дисперсная компонента выбросов ракетных двигателей с характерными размерами частиц 0.1 – 10 мкм
Физический механизм свечение - рассеяние солнечного света.
Динамика развития облака - разлет дисперсной фазы компонент ракетного выброса.
При регистрации оптических «ракетных» явлений в той или иной мере, как правило, наблюдаются оба механизма свечения. На Рис. 4, например, отчетливо видно, что после окончания динамической фазы развития явления, долгое время (до нескольких часов после начала развития явления, во время наблюдений - до восхода Солнца) наблюдалось относительно слабое диффузное свечение в месте отделения ступени ракеты-носителя, связанное с эмиссиями газовой компоненты выброса.
Отдельного рассмотрения заслуживает вопрос об образовании дисперсной фазы в ракетном выхлопе. Во-первых, достаточно крупные частицы с размерами до нескольких микрон образуются в результате конденсации паров воды при резком расширении продуктов сгорания [1, 15, 16]. В этих работах было показано, что для объяснения наблюдавшихся явлений достаточно допустить степень конденсации 5-10% водяных паров в факеле ракетных двигателей с образованием кристаллов льда с характерными размерами ³ 100 А. Этот механизм представляется весьма интересным, поскольку является универсальным как для жидкостных, так и для твердотопливных ракет. Кроме того, он не только объясняет динамику развития «ракетных облаков» в верхней атмосфере, но и крупномасштабность явлений, связанных с взаимодействием продуктов сгорания с веществом атмосферы, например в процессе образования ионосферных дыр с пониженной плотностью электронов. Действительно, разлет «ледяной» компоненты ракетного выброса должен приводить к быстрой транспортировке возмущающего фактора на большие расстояния, а возгонка льда в процессе разлета переводит его в «активное» состояние для участия в физико-химических процессах. Однако подробное рассмотрение механизма конденсации-переноса-возгонки с учетом термодинамических процессов пока не проведено.
Образование дисперсной компоненты при отсечке тяги твердотопливных двигателей и сливе компонент топлива после разделения ступеней особых проблем не вызывает, однако, необходимо оценить характерное распределение твердых частиц по размерам для корректной интерпретации результатов наблюдений.
Работа выполнена при поддержке Международного научно-технического центра, проект № 1328-99.
Список литературы
R.T.V.Kung, L.Cianciolo и J.A.Myer, Solar Scattering from Condensation in Apollo Translunar Injection Plume// AIAA Journal. 1975. v.13. №4. P. 432-437
Платов Ю.В., Фешин Б.А., Черноус С.А. Аномальные явления факты и вымысел// Наука в СССР. 1989. №. 5. С. 14-22.
Chemouss S. A., Platov Y. V. Optical Effects of Exhaust Products of a Rocket Launches," Proceedings of the 19th European Meeting on Atmospheric Studies by Optical Methods, edited by A. Steen, IRF Scientific Rept. 209, Swedish Inst. of Space Physics, Kiruna, Sweden. 1992. P. 501-505.
Ветчинкин Н.В., Границкий Л.В., Платов Ю.В., Шейхет А.И. Оптические явления в околоземной среде при работе двигательных установок ракет и спутников. I. Наземные и спутниковые наблюдения искусственных образований при запусках ракет// Космические исследования. 1993. Т.31. Вып. 1. С. 93-100.
Tagirov, V. R., Arinin, V. A., Brändström U., Pajunpää A., Klimenko V.V. Atmospheric Optical Phenomena Caused by Powerful Rocket Launches// Journal of Spacecraft and Rockets. 2000. V. 37. No. 6. P. 812-821/
Mendillo, M., Hawkins, G. S., and Klobuchar, J. A. A Sudden Vanishing of the Ionospheric F Region due to the Launch of Skylab// Journal of Geophysical Research. 1975. V. 80. No. 16. P. 2217-2228.
Карлов В.Д., Козлов С.И., Ткачев Г.Н. Крупномасштабные возмущения в ионосфере, возникающие при пролете ракеты с работающим двигателем (обзор)// Космические исследования. 1980. Т. 18, Вып. 2., С. 266-277.
Красовский В.И., Рапопорт З.Ц., Семенов А.И. Новые эмиссии в верхней атмосфере как результат искусственного воздействия на ионосферу // Космические исследования. 1982. Т. 20. Вып. 2. С. 237-243.
Платов Ю.В., Семенов А.И., Шефов Н.Н. Увеличение интенсивности эмиссии гидроксила в мезопаузе, связанное с выбросами продуктов сгорания ракетных двигателей // Геомагнетизм и аэрономия. 2001. В печати.
Аллен К.У.Астрофизические величины. 1977. М. Мир.
Экологические проблемы и риски воздействий ракетно-космической техники на окружающую природную среду. Справочное пособие. М.: Издательство «Анкил». 2000. 640 с.
Oberg J.E. The Great Soviet UFO Coverup// Ufo Journal (USPS 002-970) 103 Oldtowne Rd., Seguin, Texas 78155. 1982. October. P. 1-10.
Платов Ю.В., Рубцов В.В. НЛО и современная наука. 1991. М. Наука.
Смирнова Н.В., Козлов С.И. Козик Е.А. Влияние запусков твердотопливных ракет на ионосферу Земли. 2. Области Е, E-F// Космические исследования. 1995. Т. 33. Вып. 2. С 115.
Wu J.C. Possible Water Vapor Condensation in Rocket Exhaust Plumes// AIAA Journa., 1975. V. 13. № 6. P. 797-802
Pike C.P., Knecht R.A., Viereck R.A., Murad E., Kofsky I.L., Maris M.A., Tran N.H., Ashley G., Twist L., Gersh M.E., Elgin J.B., Berk A., Stair A.T., Bagian J.P. and Buchli J.F. Release of Liquid Water from the Space Shuttle// GRL. V. 1. N. 2. P. 139-142.