Смекни!
smekni.com

Феноменологическое обоснование формы линейного элемента шварцшильдова решения уравнений гравитационного поля ОТО (стр. 1 из 3)

Павло ДАНЫЛЬЧЕНКО

Показана возможность получения линейного элемента системы отсчета пространственных координат и времени Шварцшильда, основываясь на существовании ньютонова абсолютного пространства, являющегося лишь вместилищем для материи, и исходя из предположения о наличии, как эволюционной изменчивости, так и пространственной неоднородности свойств физического вакуума, заполняющего все это абсолютно жесткое (нерасширяющееся) евклидово (неискривленное) бесконечное пространство.

Phenomenological justification of linear element of Schwarzschild solution of GR gravitational field equations

P. Danylchenko

The possibility of getting a linear element of Schwarzschild frame of reference of spatial coordinates and time is shown, founded on the existence of Newton absolute space, which is only a container for matter. In addition to it, the presence of evolutionary changeability and spatial inhomogeneity of properties of the physical vacuum, filling all this absolutely rigid (nonexpanding) Euclidean (noncurved) infinite space, is assumed.

Ньютоновы абсолютное (космологическое) время и абсолютное (фундаментальное) пространство, формально независимое от материи и являющееся лишь вместилищем для нее [1], образуют фундаментальную систему отсчета времени и пространственных координат (СО) физического вакуума (ФВ). В работах [2...4] показано, что эволюционная изменчивость в этой СОФВ скорости распространения в фундаментальном пространстве электромагнитного взаимодействия между элементарными частицами вещества (равной скорости света в вакууме) принципиально ненаблюдаема по собственным часам СО вещества (как и влияние на скорость света движения физического тела [5]) из-за взаимозависимости и взаимной определяемости в СО вещества этой скорости и темпа течения собственного времени вещества. «Адаптация» вещества к эволюционному изменению условий взаимодействия его элементарных частиц, заключающемуся в непрерывном уменьшении в СОФВ несобственного значения скорости света, приводит к принципиально ненаблюдаемому в СО вещества (калибровочному) равновесному самосжатию физических тел в фундаментальном пространстве [2...4] и ответственна за непрерывное удаление от наблюдателя далеких астрономических объектов, то есть за явление расширения Вселенной в собственном пространстве вещества.

Связываемая с наличием гравитации пространственная неравномерность старения ФВ приводит к физической неоднородности фундаментального пространства. Эта физическая неоднородность фундаментального пространства проявляется в неодинаковости в разных его точках темпов протекания идентичных физических процессов (задаваемых неодинаковыми средними значениями частот взаимодействия элементарных частиц идентичных веществ, участвующих в этих процессах) а, следовательно, и – в неодинаковости в них темпов течения собственного квантового времени. И она сопровождается метрической неоднородностью фундаментального пространства для вещества, частично компенсирующей влияние пространственной неоднородности в СОФВ несобственного (координатного) значения скорости света на физическую неоднородность пространства. Эта метрическая неоднородность заключается в неодинаковой степени неупругого самосжатия вещества в разных точках фундаментального пространства (ввиду «адаптации» элементарных частиц последнего к неодинаковым условиям взаимодействия) и проявляется в наличии кривизны собственного пространства вещества.

Линейный элемент тела, обладающего жесткой собственной СО

Пусть ΔLj и Δlj – определяемые через стандартную среднестатистическую частоту взаимодействия и несобственное значение скорости распространения взаимодействия стандартные среднестатистические значения расстояний между взаимодействующими элементарными частицами эталонного вещества, находящимися в произвольной точке j сферически симметричного гравитационного поля, а Rj и rj – фотометрические радиусы точки j (расстояния до этой точки от центра масс обладающего гравитационным полем тела), определяемые через площадь сферической поверхности соответственно по единой для всего евклидового фундаментального (абсолютного) пространства условно жесткой в нем метрической шкале и по эволюционно самосжимающейся вместе с веществом его собственной метрической шкале. Виду этого Δl, в отличие от ΔLj, одинаково у всех идентичных эталонов и, следовательно, не изменяется ни в пространстве, ни во времени. Тогда в фундаментальном пространстве стандартное нормированное значение пространственной частоты Nj, задаваемой стандартным среднестатистическим значением расстояния взаимодействия ΔLj, и стандартное нормированное значение частоты fj взаимодействия элементарных частиц эталонного вещества могут быть определены следующим образом:

Nj = Δl / ΔLj = rj / Rj, а fj = NjVcj / c = Vcj/crj / Rj ,

где: Vcj/c = Vcj / c – нормированное значение в точке j скорости распространения взаимодействия, являющееся, как и стандартные нормированные значения пространственной Nj и событийной fj частот, безразмерностной величиной; Vcj – абсолютное (ненормированное) несобственное значение скорости распространения взаимодействия в СОФВ; c – постоянная (собственное значение) скорости света.

Темп протекания процесса эволюционного самосжатия вещества в пространственно-временном континууме (ПВК) ФВ, характеризуемый относительным изменением величины скрытого от наблюдения параметра N, как и темпы протекания любых наблюдаемых физических процессов, в каждой из точек физически неоднородного фундаментального пространства должен быть пропорционален стандартному нормированному значению в них частоты взаимодействия:

|(∂N/∂T)R| / N = |(∂lnr/∂T)R| = H(r)·f,

где независимая от космологического (абсолютного) времени T функция H(r) зависит от пространственного распределения в веществе собственного значения плотности его энтальпии и, как будет видно из дальнейшего, в не содержащем вещества условно пустом пространстве является калибровочно неизменным собственным значением постоянной Хаббла He.

Расстояния в фундаментальном пространстве требуется непрерывно перенормировывать в соответствии с непрерывной перекалибровкой жесткой метрической шкалы фундаментального пространства по какой-либо одной конкретной эволюционно уменьшающейся вещественной шкале. Использование же метрически однородной шкалы абсолютного времени (МОШАВ) [2], основанной на пропорциональной синхронизации темпа течения последнего с темпами течения собственных квантовых времен каждой из точек всех калибровочно самосжимающихся тел (поэтому то и являющейся метрически однородной шкалой космологического времени), позволяет избежать непрерывной переномировки абсолютного (космологического) времени. И, следовательно, оно позволяет рассматривать не относительное dT, а абсолютное значение его приращения dT = [1 – He(T – Tk)]–1dT. Здесь метрически неоднородное (неравномерное) абсолютное время T = Tk + (1/He)[1 – exp{He(Tk – T)}] отсчитывается по экспоненциальной (неравномерной для вещества) физически однородной шкале абсолютного времени (ФОШАВ) [2, 3], обеспечивающей неизменность в СОФВ несобственного значения скорости света Vc в каждой точке калибровочно самосжимающегося вещества, но требующей при этом непрерывной перенормировки отсчитываемого времени, от момента гипотетического сжатия вещества в фундаментальном пространстве до «нулевых» значений расстояний взаимодействия его элементарных частиц. По МОШАВ этот момент времени наступит в бесконечно далеком будущем и, поэтому, никогда физически не реализуется. Тем самым, все это позволяет рассматривать, вместо относительного, абсолютное изменение и стандартного нормированного значения частоты взаимодействия.

Аналогично (3), «темп» радиального изменения стандартных значений частоты взаимодействия должен быть пропорционален в каждой из точек фундаментального пространства значениям в них пространственных частот N и при этом – обратно пропорционален квадрату собственного (то есть перенормированного по собственному вещественному эталону длины) значения радиального расстояния, тождественно равного фотометрическому радиальному расстоянию в собственной СО физического тела. Последнее связано с убыванием в трехмерном однородном пространстве по этой зависимости плотности ничем не ослабляемого потока от источника любого физического воздействия. Поэтому, аналогично уравнению Пуассона [6]:

(∂f /∂R)T = η(r)N / r2 = η(r) / NR2,

где: η(r) – параметр, зависящий в общем случае как от заключенного в сфере с радиусом r количества вещества, так и от давления в веществе и за пределами физического тела (в условно пустом пространстве) являющийся постоянной величиной ηe, определяющей мощность источника гравитационного наведения пространственной неоднородности свойств ФВ.

Условием, как сохраняемости энергии калибровочно самосжимающимся веществом [2], так и однородности рассматриваемого здесь космологического времени является неизменность во времени (стабильность) ненаблюдаемого в собственном пространстве вещества лоренцева превышения сокращения радиальных над сокращением меридианальных его размеров в фундаментальном пространстве. А это обеспечивается лишь при наличии в СОФВ пропорциональности несобственному значению скорости света Vcj = cVcj/c значения скорости радиального движения точек эволюционно самосжимающегося тела и жестко связанного с ним его собственного физического пространства:

Vj = dRj / dT = cVj/c(r)fj / Nj = –Hj(r)Rj,

где стабильные и калибровочно неизменные величины Vj/c(r) = Vj / Vcj и Hj(r) = –cVj/c fj / rj могут являться функциями лишь от собственных радиальных координат точек тела. Откуда: Rj = Rjk exp[–Hj(T – Tk)]. Однако, из условия непрерывности собственного пространства самосжимающегося физического тела следует, что H = const(r) и, поэтому, является универсальной постоянной. И более того из условия постоянства несобственного значения скорости света Vc, определяемой в СОФВ по ФОШАВ, значение постоянной H равно собственному значению постоянной Хаббла He. Это имеет место ввиду независимости от космологического времени, как значения радиальной координаты Rjk = rj точки j, определяемого в момент времени Tk калибровки размера эталона длины в СОФВ по его размеру в СО вещества, так и значения ∂Rk/∂r.