Смекни!
smekni.com

Единицы измерения в радиационной физике (стр. 1 из 2)

С. Панкратов

специальный корреспондент журнала «Наука и жизнь»

Для оценки радиационной опасности, которой подвергается человек вблизи источников ионизирующих излучений, существует большой набор дозиметрических приборов. Каждый из них служит для измерения вполне определенной физической величины, а измерить какую-либо величину – это значит установить, сколько раз в ней содержится некоторая элементарная порция, называемая единицей физической величины. Выбор такой единицы, вообще говоря, произволен, и он закрепляется соответствующим международным соглашением. Какие же единицы выбраны для измерения свойств ионизирующих излучений?

Основная физическая величина, которая характеризует радиоактивный источник, это число происходящих в нем распадов в единицу времени. Такая величина была названа активностью. Активность того или иного вещества, например, радиоактивного изотопа, определяется количеством атомов, распадающихся в единицу времени (скажем, за одну секунду), и, следовательно, число испускаемых веществом радиоактивных частиц прямо пропорционально его активности.

В качестве единицы активности и Международной системе единиц СИ выбран беккерель (Бк, Bq). Активность в 1 Бк соответствует одному распаду в секунду. Однако в практической дозиметрии и радиационной физике чаще используется другая единица – кюри (обозначается Ки, Ci). Кюри в 37 миллиардов раз больше одного беккереля (1 Ки = 3,7 1010 Бк), то есть соответствует 37 миллиардам радиоактивных распадов в секунду. С чем связан такой, казалось бы, странный и произвольный выбор единицы? Дело в том, что именно такое число распадов происходит в одном грамме радия-226 – исторически первого вещества, в котором были изучены законы радиоактивного распада. Поскольку активность одного грамма чистого радия близка к 1 Ки, то ее часто выражают в граммах. В этом (и только в этом) случае единица массы вещества обладает единичной активностью.

Благодаря распаду количество радиоактивных атомов в первоначальной массе вещества уменьшается с течением времени. Соответственно снижается, и активность. Это уменьшение активности подчиняется экспоненциальному закону:

Ct = C0 exp (– [0,693/T]t)

который называется законом радиоактивного распада. Здесь Ct – активность вещества по прошествии времени t, С0 – активность в начальный момент. Как видно из формулы, описывающей распад, величина T служит важнейшей характеристикой радиоактивности – она показывает то время, по истечении которого активность вещества (или число радиоактивных атомов) уменьшается вдвое. Это время T называется периодом полураспада.

У разных радиоактивных веществ период полураспада меняется в очень широких пределах: от миллионных долей секунды до нескольких миллиардов лет. Например, период полураспада урана-238 равен 4,5 миллиарда лет, радиоактивного изотопа йода-131 – около 8 дней, цезия-137 – тридцать лет. При авариях с ядерными установками последние два изотопа способны доставить наибольшие неприятности. Оба представляют собой летучие продукты деления, поэтому они легко могут попасть в атмосферу и образовать аэрозоли. Однако если йода-131 через несколько месяцев останется ничтожно мало – он практически весь распадется, – то цезий-137 вместе с другими выпавшими долгоживущими изотопами еще сохраняет способность заражать местность. Во что же превращается радиоактивный йод в результате распада? В инертный газ ксенон-131, который вполне устойчив. За 100 дней содержание йода-131 и соответственно его активность уменьшатся в 212 = 4096 раз.

Под действием излучений, испускаемых радиоактивными изотопами, в облучаемом объекте накапливаются различные нарушения. Принято считать (хотя это сегодня все чаще подвергается сомнению), что изменения, происходящие в облучаемом веществе, полностью определяются поглощенной энергией радиоактивного излучения. Это положение, строго говоря, не доказано, и его можно назвать энергетическим постулатом. Во всяком случае, поглощенная энергия излучения служит самой удобной физической величиной, характеризующей действие радиации на организмы.

И вот на VII Международном конгрессе радиологов, который состоялся в 1953 году в Копенгагене, в период наиболее острого интереса к атомной науке и технике, энергию любого вида излучения, поглощенную в одном грамме вещества, было рекомендовано называть поглощенной дозой. В качестве единицы поглощенной дозы был выбран рад (rad, по первым буквам английского словосочетания «radiation absorbed dose», – поглощенная доза излучения). Один рад соответствует такой поглощенной дозе, при которой количество энергии, которая выделяется в одном грамме любого вещества, равно 100 эрг независимо от вида и энергии ионизирующего излучения. Таким образом,

1 рад = 100 эрг/г = 10–2 Дж/кг = 6,25·107 МэВ/г

для любого материала.

Поглощенная доза, образуемая в веществе в единицу времени, называется мощностью поглощенной дозы и измеряется в единицах рад/с, рад/мин, рад/ч и т.д.

Рад, так же как и кюри (1 Ки = 3,7 гигабеккерелей, ГБк), – это так называемые внесистемные единицы, и с точки зрения ортодоксальных приверженцев системы СИ на их использование должен быть наложен суровый запрет. Однако жизненная практика оказалась сильнее формальных предписаний, и «незаконная» единица поглощенной дозы – рад – используется гораздо чаще, чем соответствующая единица системы СИ – грэй (обозначается Гр, Gy). (Например, в широко используемом юбилейном справочнике, посвященном 50-летню Американского института физики, которое отмечалось в 1981 году, единица «грэй» вообще не упоминается.) Соотношение между единицами поглощенной дозы таково:

1 Гр = 1 Дж/кг = 100 рад.

Мощность поглощенной дозы измеряется в системе СИ в Гр/с, Гр/ч и т.д.

Стоит обратить внимание на то обстоятельство, что рад (или грэй) – единица чисто физической величины. По существу, это энергетическая единица, никак не учитывающая те биологические эффекты, которые производит проникающая радиация при взаимодействии с веществом. Однако то, что действительно интересует специалистов по дозиметрии и радиационной физике, – это изменения в организме, возникающие при облучении человека. Оказалось, что тяжесть всяческих нарушений сильно различается в зависимости от типа излучения.

Другими словами, знания поглощенной дозы совершенно недостаточно для оценки радиационной опасности. Более того, измерить поглощенную дозу непосредственно в живой ткани чрезвычайно трудно, и даже если бы удалось проделать такие измерения, их ценность оказалась бы невелика. Действительно, отклик живого организма па облучение определяется не столько поглощенной дозой, сколько микроскопическим – то есть на уровне отдельных молекул – распределением энергии по чувствительным структурам живых клеток. Поэтому возникла необходимость ввести такую измеримую величину, которая учитывала бы не только выделение энергии, но и биологические последствия облучения.

Из соображений простоты и удобства биологические эффекты, вызванные любыми ионизирующими агентами, принято сравнивать с воздействием па живой организм рентгеновского или гамма-излучения. Удобство здесь состоит в том, что для рентгеновского излучения заданные дозы и их мощности сравнительно просто получаются (например, с помощью калиброванных рентгеновских источников), хорошо воспроизводятся и надежно измеряются. Все эти процедуры становятся заметно сложнее для других типов излучений. Чтобы можно было сравнивать воздействие последних с биологическими эффектами от рентгеновского и гамма-излучения, вводится так называемая эквивалентная доза, которая определяется как произведение поглощенной дозы на некоторый коэффициент, зависящий от вида излучения.

Этот коэффициент, называемый «фактором качества» Q, приблизительно равен единице для гамма-лучей и протонов высокой энергии; для тепловых нейтронов Q ≈ 3, а для быстрых нейтронов значение Q достигает десяти. При облучении α-частицами и тяжелыми ионами Q ≈ 20, а это значит, что даже сравнительно малые поглощенные дозы могут вызвать серьезные биологические последствия. Эквивалентная доза измеряется в бэрах (бэр – биологический эквивалент рентгена). Иногда употребляется также наименование «рем» (от английской аббревиатуры rem – roentgen equivalent for man, эквивалент рентгена для человека). Коэффициент качества излучения Q устанавливается на основе радиобиологических экспериментов и приводится в специальных таблицах. Для рентгеновского излучения (Q = 1) один рад поглощенной дозы соответствует одному бэру.

Рис. 1. Радиоактивный распад

При радиоактивном распаде число нестабильных ядер уменьшается с течением времени очень быстро – экспоненциально. Продолжительность жизни распадающегося вещества характеризуют временем, по истечении которого количество активных атомов в веществе в среднем уменьшается вдвое. Этот промежуток времени Т называется периодом полураспада. Если, например, в материале, испытывающем радиоактивное превращение, первоначально было N0 ядер, то через время Т их станет 1/2 N0, через 2Т – 1/4 N0, через 3Т – уже 1/8 N0, и так далее. Число радиоактивных ядер будет «выгорать» в геометрической прогрессии с показателем, равным двойке. Периоды полураспада для различных радиоактивных веществ изменяются от миллиардов лет до миллионных долей секунды и хорошо поддаются вычислению с помощью квантовой механики.

В принципе особой необходимости в специальной единице эквивалентной дозы нет, она может измеряться в тех же единицах, что и поглощенная доза, поскольку коэффициент Q – безразмерный. Тем не менее, учитывая важность проблемы биологического действия ионизирующих излучений, в радиационной физике и при расчете защиты от ядерных излучений стали использовать единицу эквивалентной дозы. В системе СИ эта единица установлена совсем недавно и называется зиверт (обозначается Зв, Sv). Эквивалентная доза в 4...5 зиверт (примерно 400...500 бэр), полученная за короткое время, вызывает тяжелое лучевое поражение и может привести к смертельному исходу. Предельно допустимая доза (ПДД) для персонала, работающего с радиоактивными веществами, установлена в 5 бэр/год (или примерно 100 мбэр/неделя).