Смекни!
smekni.com

О скорости электромагнитных волн (стр. 2 из 2)

Желая проверить эту догадку, автор осуществил эксперимент по измерению скорости бегущей волны в длинной линии (кабеле) на низких частотах.

Для эксперимента была использована двухпроводная линия (витая пара, UTP, category 3) общей длиной 302,65 метра. В качестве источника электромагнитной волны использовались генераторы синусоидальных сигналов Г3-118 (10 Гц – 200 кГц) и Г6-26 (0,001 Гц – 10 кГц). В качестве измерителя использовался двухлучевой осциллограф L-5040 (0 – 40 МГц).

Как стало видно из экспериментальных данных, скорость электромагнитной волны, начиная со 100кГц, падает с уменьшением частоты со скоростью 10 дБ на декаду. Такое возможно лишь при одном условии: если диэлектрическая проницаемость эфира («вакуума») растет с падением частоты со скоростью 20 дБ на декаду.

Причем, рост диэлектрической проницаемости наблюдается для расстояний, соизмеримых с длиной волны, а не для малых расстояний. Это было проверено с помощью другого эксперимента, который обычно выполняется студентами радиотехнических техникумов и вузов во время лабораторных работ. С помощью этого же оборудования измерялась емкость воздушного конденсатора номиналом 720 пф, воздушный зазор – 0,25 мм, в том же диапазоне частот. Измерения показали, что емкость конденсатора не меняется с частотой, то есть для расстояний много меньших, чем длина волны (расстояния между пластинами конденсатора) диэлектрическая проницаемость эфира стабильна.

Проведенный анализ данных по межзвездной дисперсии и эксперименту по измерению скорости электромагнитной волны на низких частотах позволил показать следующее:

Скорость электромагнитных волн в вакууме, которую релятивисты называют «электродинамической постоянной» вовсе не постоянна. Она меняется заметным образом на межзвездных расстояниях в оптическом (квантовом) диапазоне – от вариации температуры эфира, в радиодиапазоне она подвержена межзвездной частотной дисперсии, и подвержена сильному изменению в низкочастотном диапазоне, падая с уменьшением частоты со скоростью 10 дБ на декаду, начиная со 100 кГц (длина волны 3 км и более).

Весь спектр частот электромагнитных волн делится на три кардинально отличающихся диапазона:

квантовый, без частотной дисперсии, с длиной волны короче 1 мм, – длины волны собственного теплового излучения эфира на 2,72 K;

радиодиапазон, с длинами волн от 1 мм до 3 км, где наблюдается слабая частотная дисперсия;

низкочастотный диапазон, с длиной волны более 3 км, где из-за превышения предела упругости эфира наблюдается падение скорости с длиной волны.

Диэлектрическая проницаемость эфира растет с расстоянием для частот ниже 100 кГц (для километровых расстояний).

Известные уравнения электродинамики не могут соблюдаться для распределенных систем более 3 км при частотах менее 100 кГц в связи с непостоянством скорости электромагнитных волн.

Постоянные и квазипостоянные поля не являются частным случаем электродинамики с постоянной скоростью волн.

Обратно-квадратическая кулоновская зависимость силы взаимодействия электрических зарядов от расстояния переходит в обратную кубическую зависимость для больших расстояний (с изломом на 0,5 – 2 км).

Длинные низкочастотные линии электропередачи имеют погонную электрическую и энергетическую емкости более тех, что даются уравнениями электродинамики с постоянной «электродинамической константой».

Из столетней практики радиопередающих устройств известно, что ниже 100 кГц эффективность передачи резко снижается. Теперь этому есть объяснение: ниже 100 кГц падает скорость электромагнитных волн и возрастает диэлектрическая проницаемость эфира, что ведет к уменьшению волнового сопротивления среды и является препятствием для передачи радиоволн.

Подтверждается мнение автора о происхождении магнитных бурь как следствия электромагнитных импульсов тритиево-дейтериевых взрывов на Солнце. При средней частоте 1 Гц колебаний магнитного поля, замеряемых на Земле, их запаздывание от солнечной вспышки составляет около 40 часов, что соответствует скорости электромагнитной волны ≈1000 км/с.

Можно предполагать, что электрические емкости большеразмерных конденсаторов, таких как грозовые облака, ионосферные слои, земной шар и небесные тела, имеют значения много больше, чем это дается формулами с постоянной диэлектрической проницаемостью эфира (вместо линейной зависимости емкости шара от радиуса должна иметь место квадратичная зависимость). Для подтверждения последнего необходимо проведение экспериментов с большеразмерными электрическими емкостями.

Списоклитературы

Michelson A., Morley E. – American J. Sci., 1887, 34, p. 333...345.

St. Marinov, The velocity of light is direction dependent / Czech. J. Phys. 1974. B24. N9. 965...970.

Lorentz H.A. Proc. Acad. Sci. – Amsterdam, 1904, V.6, p. 809.

Poincare H. Sur la dynamique lйlectron, Comptes rendus de lБcademie des sciences, 140 (1905), pages 1504 – 1508. Oeuvres, tome IX, pages 489...493.

Einstein A. Annalen der Phys., 1905, B.17, s. 891.

Белопольский А.А. Астрономические труды. – Москва, ГИТТЛ, 1954.

Хайдаров К. А. Термодинамика эфира. – Алматы, 2003.

Умов Н.А. Теория простых сред и ее приложение к выводу основных законов электростатических и электродинамических взаимодействий. Одесса, 1873.

Умов Н.А. Уравнения движения энергии в телах (1874). – Избранные сочинения.

Умов Н.А. Прибавление к работе «Уравнения движения энергии в телах» (1874). – Избранные сочинения.

Umov N.A. Albeitung der Bewegungsgleichungen der Energie in continuirlichen Kцrpern (Вывод уравнения движения энергии в непрерывных телах). «Zeitschrift fьr Mathematik und Physik», Bd. XIX, 1874, H.5.

Umov N.A. Ein Theorem &uuber;ber die Wechselwirkungen in Endlichen Entfernungen. (Теорема относительно взаимодействий на расстояниях конечных)., «Zeitschrift fьr Mathematik und Physik», Вd. XIX, 1874, Bd. XIX, 1874, H.2.

Regener, E., Zeitschrift fьr Physik 80, 666...669, 1933.

Хайдаров К.А. Невидимая Вселенная. – BRI, Алматы, 2005.

Хайдаров К.А. Температура эфира и красные смещения. – BRI, Алматы, 2005.