Смекни!
smekni.com

О некоторых стратегических ошибках в современном креационном мышлении (стр. 2 из 4)

«Матрицы жизни» и проблемы эмбриогенеза

Напомним, что для адекватного описания ряда биологических закономерностей, мною были предложены формальные схемы – «матрицы жизни», являющиеся неким аналогом того, чем является математический аппарат при решении проблем физических.

Матрица представляет собой довольно простую схему, состоящую из ряда расположенных друг над другом горизонтальных линий, каждая из которых является неким интегральным показателем свойств какого-либо вида живых существ, связанных с его таксономическим положением. Нулевой уровень характеризует свойства общебиологического характера, первый – свойства, характеризующие то царство, к которому принадлежит рассматриваемый нами вид, второй уровень – свойства типа, третий – подтипа и т.д., вплоть до последнего уровня, в котором отражены видовые свойства (рис.1).

Манипулируя содержанием формальных схем, можно создавать модели того, что мы наблюдаем в природе в случае таких явлений как «параллелизм», «конвергенция», мозаичные формы и ряда других биологических явлений, традиционно объясняемых с эволюционных позиций (Хоменков, 2005). Эффективность таких схем подразумевает наличие разумного замысла, лежащего в принципах мироустроения. Аналогичным образом дело обстоит и в сфере физической реальности, которая, по свидетельству исследователей, подчинена принципу математической простоты и симметрии.

Но может ли в таком случае использование формальных схем – «матриц жизни» – помочь нам в объяснении тех закономерностей эмбрионального развития организмов, которые были описаны еще Карлом Бэром и которые Эрнст Геккель использовал в качестве «доказательства» эволюции? Может ли этот метод объяснить, почему человеческий зародыш имеет общие черты с зародышем рыбы, черты, которые гораздо ближе к рыбьим, чем к человеческим?

Очевидно, что если наши формальные схемы являются отражением разумного замысла Создателя живой природы, то процесс индивидуального развития организма должен иллюстрироваться этими схемами, как «заполнение» их уровней начиная от нулевого – общебиологического, и кончая восьмым – видоспецифичным, то есть «снизу вверх».

Здесь уместно проведение некоторой аналогии со сферой технической деятельности человека. Если мы, к примеру, хотим сконструировать серию автомобилей различного типа, то этот процесс логично начать с самых общих принципов, которые свойственны абсолютно всем автомобилям, например, положить в основу нашей конструкции платформу с четырьмя (как минимум) колесами и систему управления с находящимся спереди рулем. Далее на основании этих общих принципов следует подумать о размерах автомобилей, мощности мотора, форме кузова и т.д. – то есть о тех принципах, которые характерны для определенного класса машин. И лишь в самом конце можно позаботиться о второстепенных деталях, связанных с комфортностью использования каждого конкретного вида автомобилей.

Подобное конструирование будет основываться на иерархической шкале, которая очень напоминает наши «матрицы». Очевидно, что с чем-то похожим мы должны столкнуться и в процессе эмбриогенеза, если, конечно, подходить к этому процессу со стороны представлений о разумном замысле, лежащем в основе мироустроения. Процесс индивидуального развития живых организмов должен проходить путем появления сначала общих признаков, и лишь в конце – самых специфических, то есть «снизу вверх». Совпадает ли это теоретическое ожидание с тем, что мы наблюдаем в реальной жизни?

Уже упоминаемый нами выдающийся эмбриолог Карл-Эрнст фон Бэр (1792 - 1876), писал: «Я зафиксировал в спирте двух маленьких зародышей, забыв пометить их. А теперь не могу определить, к какому роду животных они относятся. Они могут быть ящерицами, мелкими птицами или даже млекопитающими!» (цит. по: Гилберт, 1993 (Т.1), с. 145).

Эта неразличимость очень хорошо видна на примере наших формальных схем. Заполнение уровней «матриц» с нулевого по третий (что соответствует ранним этапам эмбриогенеза), у представителей перечисленных Бэром классов позвоночных должно представлять весьма сходный процесс. Ведь согласно Бэру «история развития особи есть история растущей во всех отношений индивидуальности» (Лункевич, 1960, с. 382). Бэр писал: «зародыш определенной животной формы вовсе не пробегает через ряд других определенных же форм, а скорее отделяется от них» (цит. по: Лункевич, 1960, с. 382), т.е. отходит все дальше и дальше от всех форм, кроме той, к которой направлено его собственное развитие. Что же касается более детальной трактовки открытых им особенностей индивидуального развития, то Бэр, подытоживая результаты своих наблюдений, выделил в свое время следующие основные законы: «1) признаки, общие для большой группы животных, образуются у зародыша раньше, чем частные признаки; 2) из более общего в соотношении форм образуется все более частное и затем наиболее специализированные признаки; 3) каждый зародыш определенной животной формы не проходит стадии развития других животных форм, а все более отделяется от них;4) зародыш высшей формы никогда не бывает похож на другую форму, а лишь на ее зародыш» (цит. по: Северцов, 1987, с. 194–195).

Характерно, что Бэр полагал, что «обнаружил божественный план, по которому развиваются все организмы в такой группе, как позвоночные» (Гилберт, 1993 (Т. 1), с. 147). И при всем этом его законы до сих пор не потеряли своей актуальности, хотя из них было изъято то метафизическое содержание, которое в них вкладывал этот великий эмбриолог. Как подчеркивает профессор А.С. Северцов, в схеме Карла Бэра «два основных положения, получившие название принципа зародышевого сходства и принципа специализации индивидуального развития, сохранили свое значение до настоящего времени» (Северцов, 1987, с. 195). Сам Бэр писал по поводу этих принципов следующее: «Чем более несходны друг с другом две животные формы, тем дольше в глубь истории развития (эмбрионального) нужно погрузиться для того, чтобы найти между ними сходство» (цит. по: Лункевич, 1960, с. 381).

Характерно, что эта закономерность настолько явно вытекает из свойств нашей формальной схемы «матриц», что эти формальные схемы можно считать ее прямыми иллюстрациями. Этот факт можно проиллюстрировать следующим рисунком, на котором показаны три «матрицы жизни» – лошади, зебры и рыбы (рис. 2). Чтобы найти общее в эмбрионах первых двух живых существ, следует «погрузиться» до второго (сверху) уровня «матрицы», который соответствует уровню рода. Чтобы найти общее в «матрицах» лошади и рыбы – нужно дойти до шестого сверху уровня (подтипа), то есть до гораздо более ранних стадий развития (вспомним, процесс эмбриогенеза – это последовательное «заполнение» матриц, идущее «снизу вверх»).

Однако каким образом с помощью наших формальных схем можно объяснить те многочисленные факты, которые традиционно привлекаются в качестве иллюстрации «биогенетического закона»? Почему зародыш человека имеет определенную степень схожести с зародышем рыбы? Чтобы ответит на эти вопросы, нужно дополнить нашу формальную схему «матриц» некоторыми конкретными гистологическими данными.

Типологический ключ к «главному доказательству эволюции»

Некоторые ученые, размышлявшие о том, каким образом можно объективно оценить степень сложности какого-либо организма, пришли к выводу, что наилучшим показателем здесь может служить «число типов клеток, различаемых у представителей данной группы» (Рэфф, Кофмен, 1986, с. 327) . У представителей разных систематических групп этот показатель будет весьма различен. «Так, у бактерий имеются клетки двух типов (вегетативные клетки и споры), у дрожжей – 3–4 типов, у водорослей и грибов – примерно 5 типов, у губок – 11, у кишечнополостных – 14–20, у растений – от 20 до 40, у кольчецов – примерно 55» (Рэфф, Кофмен, 1986, с. 327). Для более высокоорганизованных животных такие цифры получить сложнее, но, тем не менее, можно давать хотя бы приблизительные цифры. У разных групп рыб количество клеток по приблизительным оценкам колеблется в пределах 70–80. Что же касается млекопитающих, то у них количество типов клеток как минимум 100, но, по мнению некоторых ученых, на целый порядок больше (Рэфф, Кофмен, 1986, с. 327–328). Приведенные цифры можно считать объективным выражением той возрастающей сложности «лестницы живых существ» о которой писал в свое время еще Аристотель . И эта возрастающая сложность имеет свое выражение в конкретных гистологических данных: «чем проще общая организация животных, тем более универсальны и мультифункциональны ткани. И наоборот, чем выше и сложнее морфологическая организация, тем специфичнее организация гистоструктур и тем больше их разнообразие» (Мирзоян, 1980, с. 132).