Смекни!
smekni.com

Информационная значимость молекулярно- биологических процессов в теории Сотворения (стр. 2 из 7)

А если это так, то сходство в нуклеотидной последовательности шимпанзе и человека не является доказательством их эволюции от общего предка.

В одной из недавно опубликованных работ авторы демонстрировали сходство нуклеотидной последовательности шимпанзе и человека, приводится также сходство в кодировании аминокислот теми или иными триплетами и отмечается очень малая вероятность такого случайного совпадения 0.254. И в заключении говорится о том, что «все это бесспорные признаки единства происхождения…» (Борисов с соавт., 2010). Ну, кто тут может быть против? Естественно. Источник происхождения един и им является Господь Бог. Ведь совершенно очевидные факты сходства различных автомобилей с двигателем внутреннего сгорания указывают на общие принципы их дизайна. И чтобы ни пытались делать конструкторы, автомобиль по основному набору признаков остается все тем же и это говорит об оптимальности его конструкции на данном этапе технического развития. Почему-то все убеждены, что автомобили не появились сами по себе, эволюционируя от телеги. Но что касается живых существ, которые в миллионы раз сложнее современного автомобиля, напичканного электроникой, эволюционисты считают, что они появились сами по себе, просто в силу случайного стечения обстоятельств.

Даже при обсуждении такой животрепещущей темы, пусть на молекулярном уровне, как воображаемое сходство человека и шимпанзе необходимо все-таки придерживаться здравого смысла. Чего стоит, например, такая фраза из цитированной книги: «Даже горилла, внешне не так уж сильно отличающаяся от шимпанзе (по крайней мере, на наш человеческий взгляд), приходится шимпанзе более дальней родственницей, чем человек» (Борисов соав., 2010, стр. 7). Если такой вывод делается на основании данных нуклеотидных последовательностей, то становится совершенно ясно, что этот метод может быть использован с большими ограничениям и очень осторожно в данной проблеме.

Кстати стоит все-таки напомнить об одном хрестоматийном факте. У человекообразных обезьян 24 пары хромосомы (48 хромосом), а у человека их только 23 пары (46 хромосом). Об этом общеизвестном факте авторы цитируемого издания очевидно не догадываются. И тем не менее они очень одобрительно отзываются о предположении, что две хромосомы обезьяны в прошлом слились и появилась одна человеческая. В этой связи следует опять же напомнить, что хромосомы появляются в клетке строго перед её делением. Этот процесс настолько строго отработан и специфичен для разных клеток, что совершенно непонятно как всё-таки две хромосомы могли слиться, не повредив весь точный как часы механизм деления генетической информации. Из медицинской практики известно о тяжелейших генетических заболеваниях человека, при нарушениях хромосомного состава. На этом основании можно высказать серьезные сомнения в связи с прогрессивной эволюцией. Скорее всего, слияние хромосом могло привести к летальному исходу или к разного рода уродствам, что вряд ли могло сыграть положительную роль в «эволюции». И если эти явления всё-таки имели место в прошлом «эволюционном» переходе между обезьяной и человеком, то наверняка должны были бы встречаться обезьяны с 23 парами хромосом, если только этому признаку не придаётся какое-то особое значение в «эволюции» человека. Однако общеизвестно, что таковых не наблюдается. В качестве доказательства этого фантастического события эволюционисты очень смело пишут о рудиментарных центромерах и теломерах хромосом человека. В этой связи следует напомнить длинную и малопривлекательную историю развития науки, согласно которой не один десяток важнейших органов человека смело называли рудиментарными, к которым относили миндалины, аппендикс, вилочковую железу и др. (Бергман, Хоув , 2007).

В одной из монографий по молекулярной биологии отмечается: «Анализ ряда индивидуальных белков показал, что между аминокислотным составом и эволюционным положением того или иного организма нет никакой корреляции» (Уотсон, стр. 343). Хотя конечно аминокислотный состав слишком грубый показатель и мало что может прояснить. Но вот более современные данные по аминокислотной последовательности цитохрома b. Показано 14 аминокислотных различий между макакой и шимпанзе, 13 – между макакой и человеком и 2 различия между шимпанзе и человеком (Борисов с соав. 2010, гл. 6, стр.3). Вряд ли можно причислить эти данные к доказательствам эволюции, если вспомнить во сколько раз человек по самым разным параметрам отличается от шимпанзе. Укладываются ли эти отличия в разницу в два нуклеотида? Это ещё один риторический вопрос.

И еще немного о белках. «Особенно следует в этом случае упомянуть цитохром С животных…и если сравнивать по этому признаку, то жабы окажутся ближе к голубям, чем к змеям» (Юнкер Р., Шерер З., 1997, стр.118). Из этого видно, что там, где должно быть сходство, согласно эволюционному мировоззрению (крокодил и другие рептилии), сходства мало, а там где его не должно быть (человек и цыпленок, жабы и голуби) – оно есть.

Можно привести также биохимические данные по двум важным белкам животных, гемоглобину и лизоциму: «Гемоглобин крокодилов больше схож с гемоглобином цыпленка, чем с гемоглобином змей и других рептилий (Гемоглобин – это очень важный белок крови, ответственный за перенос кислорода из легких по всему телу). Человеческий лизоцим, энзим необходимый для переваривания пищи, более схож с лизоцимом цыпленка, чем с лизоцимом любого другого млекопитающего» (Уайт Д., Комнинеллис Н., 2005, стр.26).

Вообще тонкое строение органоидов клетки и в частности хромосом, по всей видимости, нельзя считать достоверной трактовкой тех или иных теоретических выкладок, касающихся «родства» человека и шимпанзе. Вот что пишется в одном из учебников по биологии: «Несмотря на большие возможности, цитогенетические и молекулярно - биологические критерии также не являются абсолютными. Встречаются случаи, когда относительно далёкие виды (например, почти все представители семейства кошачьих) имеют одинаковые кариотипы. В то же время локальные популяции одного вида (например, обыкновенной беззубки) могут значительно различаться по числу и форме хромосом. Разные гены также различаются по степени изменчивости. Так например, ген ядерного белка гистона Н4 человека почти не отличается от гомологичного гена гороха. Понятно, что анализ таких эволюционно консервативных генов оказывается бесполезным для различения близких видов. В то же время в геноме человека, животных и растений обнаружены чрезвычайно изменчивые повторённые последовательности ДНК, которые могут различаться даже у родных братьев. Эти последовательности оказались незаменимыми в криминалистике для идентификации личности (геномная дактилоскопия), но малопригодными для различения видов» (Биология 2010, стр. 81). Эта длинная цитата показывает, что большинство интерпретаций эволюционистов в отношении молекулярно –биохимических «доказательств» эволюции свидетельствуют о большом желании выдать желаемое за действительное.

Мутации как информационная энтропия

«Эволюция была бы невозможна, если бы генетические программы воспроизводились абсолютно точно. Как вы знаете, копирование генетических программ – репликация ДНК – происходит с высочайшей, но не абсолютной точностью. Изредка возникают ошибки –мутации» ( Биология. 2010, стр.39). В этом отрывке следует отметить два слова, важные для понимания алогичности эволюционизма. Во-первых, здесь и во многих местах этого и других учебников говориться о программах. Термин «программа» используется как некая данность и существующая как сама по себе категория. Но как возникла программа или как она могла «эволюционировать» самостоятельно, даже самая простая, об этом предпочитают не говорить. Когда приверженцы эволюции начинают загибать пальцы и приводить, с их точки зрения, «доказательства» эволюции, они сразу же оговариваются: «Мы сейчас не будем говорить о происхождении жизни, а будем говорить только об эволюции». Надо сказать очень удобный приём. Отказываясь решить кардинальную проблему происхождения биологической информации, а вместе с ней и происхождение генетического кода и программ (Внимание! Термины информатики!), которые задействованы в управлении всех сложных процессах в живой клетки, вообще теряет смысл обсуждения каких бы то ни было вопросов, связанных с биологической эволюцией. Но проявим снисходительность к чужим слабостям и продолжим.

Вторая интересная деталь в приведенном отрывке – это слово «ошибки». Если быть логичным до конца, то вся «эволюция» – это цепь ошибок в тех совершенных программах, которые были созданы много лет назад. Кем? На этот вопрос у эволюционистов нет ответа, да и быть не может. Ведь вся жизнь, по их мнению – это всего лишь цепь случайных изменений, ошибок, которые и привели ко всему великолепию, красоте и разнообразию форм жизни, которые нас окружают. Следующая цитата хорошо отражает сложившуюся ситуацию в философии материалистического эволюционизма: «Более или менее случайными являются только мутации, однако естественный отбор – процесс закономерный, и он придает эволюционным изменениям направленность и видимость осмысленности («разумного дизайна») (Борисов с соав. 2010, стр. 1). А по сути данное заявление вполне соответствует воззрениям Жана Батиста Ламарка (1744-1829), который более двухсот лет определял эволюцию «как непрерывное поступательное движение от низших форм жизни к высшим» (Биология. 2010, стр. 5). «Механизмом эволюции Ламарк считал изначально заложенное в каждом живом организме стремление к совершенству, к прогрессивному развитию» (там же). Вполне современное заявление в духе вышеприведенной цитате о «направленности и видимости осмысленности» эволюционного процесса.

Что же такое мутации с точки зрения информации? Это проявление самой обычной энтропии, которая является неотъемлемой частью существования нашего мира. А энтропия, как известно, ничего не может породить, кроме беспорядка и хаоса. Однако, судя по тексту учебника, выделяются вредные, полезные и нейтральные мутации (Биология. 2010, стр. 40). Попробуем разобраться в этих определениях. Во-первых, какой критерий используется для этой классификации? Часто антропогенный фактор превалирует. Простой пример. В 60-е годы прошлого века селекционеры очень увлекались выведением высоколизиновых гибридов кукурузы. Дело в том, что эндосперм кукурузы на 70-80% состоит из запасного белка зеина, который практически не содержит незаменимой аминокислоты лизина (Перуанский, Савич, 1987, Савич, Перуанский, 1988). Лизин же не может синтезироваться в организме человека и должен поступать с пищей извне. Были обнаружены два высоколизиновых мутанта кукурузы Опейк-2 и Флаури - 2, которые казалось бы решали проблему с дефицитом лизина в пищевых продуктах, изготовленных из кукурузы. Зерно этих мутантов имело пониженное содержание зеина (до 22%) и повышенное содержание другого запасного белка глютелина (40-50%). Последний характеризовался более сбалансированным аминокислотным составом (Козьмина, 1976). Однако эти мутантные формы кукурузы, характеризовались пониженной жизнеспособностью, слабой устойчивостью к болезням, сравнительно небольшим восковидным зерном и низкой урожайностью. Селекционеры приложили немало усилий для выведения высоколизиновой кукурузы, используя упомянутые мутантные формы. Однако достичь значительных положительных результатов не удалось. Повышение содержание лизина снижало другие важные качества гибридов кукурузы. На этом примере видно, что, казалось бы, «полезная» мутация для человека, оказалась неблагоприятной для самого растения. Можно привести другие примеры, связанные с индуцированной устойчивостью некоторых болезнетворных микроорганизмов к антибиотикам (Юнкер, Шерер, 1987). Казалось бы полезное адаптивное свойство для этих микроорганизмов и вредное для человека, однако мы доподлинно не знаем всех тонкостей такой реакции, и самое главное, дальнейших последствий для данных штаммов микроорганизмов. И то, что такие свойства были не совсем полезными для самих микроорганизмов, свидетельствует факт возврата их к «дикому» исходному типу при длительном отсутствии антибиотиков в культивируемой среде.