М.Н. Морозов, А.И. Танаков, А.В. Герасимов, Д.А. Быстров, В.Э. Цвирко, Марийский государственный технический университет, Йошкар-Ола, Россия
М.В. Дорофеев, Московский институт открытого образования, Москва, Россия
1. Введение
Современный рынок электронных образовательных ресурсов развивается очень быстро. Учителю предлагается большой выбор педагогических программных средств (ППС). С каждым днем возможности таких ресурсов, нацеленных на существенное повышение эффективности образовательного процесса в целом и обучения химии в частности, многократно возрастают. В связи с этим возникают принципиальные вопросы: применение каких ППС отвечает задачам современной школы, где и как их надо использовать, какие возможности они должны предоставлять школьникам для того, чтобы стать помощниками на пути познания, саморазвития личности, не ограничивать возможности ребенка (Дорофеев М.В., 2002). По какому пути следует идти создателям и разработчикам ППС нового поколения для того, чтобы успешно решить эти вопросы.
В настоящее время существует несоответствие способов представления учебного материала в электронных изданиях и современных теорий обучения. Большинство электронных учебных материалов до сих пор создаются в виде статических гипертекстовых документов, в которые иногда включаются Flash-анимации. В то же время, современными исследованиями (Anderson T. et al., 2004) установлено, что образовательный процесс становится более эффективным при использовании интерактивных, мультимедиа насыщенных образовательных ресурсов, обеспечивающих активные методы обучения.
Отчасти сущность этого несоответствия заключается в том, что процесс создания образовательного гипертекста достаточно дешев и прост. Напротив, проектирование и реализация информационной образовательной среды для активного обучения является сложной задачей, требующей больших временных и финансовых затрат.
Однако, взаимодействие ребенка с ЭВМ в учебном процессе эффективно лишь в том случае, если ППС соответствует критериям высокого уровня интерактивности, предполагающего полноценный, интеллектуальный диалог машины и пользователя. Для того, чтобы у ребенка возник непроизвольный интерес к сотрудничеству с компьютером и в процессе этого совместного творчества устойчивая познавательная мотивация к решению образовательных, исследовательских задач, необходимо создание таких условий, при которых ребенок становится непосредственным участником событий, развивающихся на экране монитора, то есть условий для полноценного деятельностного подхода к изучаемому явлению.
Залог успешного применения ППС в образовательном процессе современной школы заложен в хорошо известных принципах педагогики сотрудничества, которые можно перефразировать следующим образом: «не к компьютеру за готовыми знаниями, а вместе с компьютером за новыми знаниями».
Результаты исследований свидетельствуют, что простые электронные формы представления учебного материала при обучении не эффективны (Anderson T. et al., 2004). Кроме того, в (Prensky M., 2000) указывается, что учащиеся «поколения видеоигр» ориентированы на восприятие высоко-интерактивной, мультимедиа насыщенной обучающей среды. Упомянутым выше требованиям наилучшим образом соответствуют образовательные программы, моделирующие объекты и процессы реального мира и системы виртуальной реальности. Соответственно, подобные мультимедиа системы, которые могут быть использованы для поддержки процесса активного обучения, привлекают в последнее время повышенное внимание. Примером таких обучающих систем являются виртуальные лаборатории, которые могут моделировать поведение объектов реального мира в компьютерной образовательной среде и помогают учащимся овладевать новыми знаниями и умениями в научно-естественных дисциплинах, таких как химия, физика и биология.
Оппоненты такого подхода высказывают вполне обоснованные опасения, что школьник, в силу своей неопытности, не сможет отличить виртуальный мир от реального, то есть модельные объекты, созданные компьютером, полностью вытеснят объекты реально существующего окружающего мира. Для того, чтобы избежать возможного отрицательного эффекта использования модельных компьютерных сред в процессе обучения, определены два основных направления. Первое: при разработке ППС необходимо накладывать ограничения, вводить соответствующие комментарии, например, вкладывать их в уста педагогических агентов. Второе: использование современного компьютера в школьном образовании ни в коем случае не снижает ведущей роли учителя. Творчески работающий учитель понимает, что современные ППС позволяют учащимся осознать модельные объекты, условия их существования, улучшить таким образом понимание изучаемого материала и, что особенно важно, способствуют умственному развитию школьника. Справедливую критику полной замены реальной школьной лаборатории виртуальной следует направить скорее не разработчикам ППС, а в адрес нерадивых учителей, которые находят множество причин для исключения реального эксперимента из своей практики.
Эта статья представляет электронное издание «Виртуальная химическая лаборатория для 8-11 классов», разработанное в Лаборатории систем мультимедиа МарГТУ. При создании данного ППС разработчики попытались реализовать основные идеи современной концепции сотворчества ученика и компьютера, учесть замечания и преодолеть недостатки существующих образовательных электронных изданий. Виртуальная лаборатория содержит большое количество химических опытов, реализованных с использованием трехмерной графики и анимации. В статье также изложен подход, обеспечивающий эффективность финансовых и временных затрат, процесса разработки таких сложных мультимедиа систем как виртуальные лаборатории.
2. Виртуальные эксперименты в преподавании химии
Во многих исследованиях отмечается значение виртуальных экспериментов для химического образования и подчеркиваются преимущества их использования. Например, в (Dalgarno B., 2003) указывается, что виртуальные опыты могут применяться для ознакомления учащихся с техникой выполнения экспериментов, химической посудой и оборудованием перед непосредственной работой в лаборатории. Это позволяет учащимся лучше подготовиться к проведению этих или подобных опытов в реальной химической лаборатории. Необходимо особо отметить, что виртуальные химические эксперименты безопасны даже для неподготовленных пользователей. Учащиеся могут также проводить такие опыты, выполнение которых в реальной лаборатории может быть опасно или дорого. В (Dalgarno B., 2003) указывается, что проведение виртуальных экспериментов могло бы помочь учащимся освоить навыки записи наблюдений, составления отчетов и интерпретации данных в лабораторном журнале. В (Carnevale D., 2003) отмечается, что компьютерные модели химической лаборатории побуждают учащихся экспериментировать и получать удовлетворение от собственных открытий.
При создании виртуальных лабораторий могут использоваться различные подходы. Прежде всего, виртуальные лаборатории разделяются по методам доставки образовательного контента. Программные продукты могут поставляться на компакт-дисках (CD-ROM) или размешаться на сайте в сети Интернет. По способу визуализации различают лаборатории, в которых используется двухмерная, трехмерная графика и анимация. Кроме того, в (Robinson J., 2003) виртуальные лаборатории делятся на две категории в зависимости от способа представления знаний о предметной области. Указывается, что виртуальные лаборатории, в которых представление знаний о предметной области основано на отдельных фактах, ограничены набором заранее запрограммированных экспериментов. Этот подход используется при разработке большинства современных виртуальных лабораторий. Другой подход позволяет учащимся проводить любые эксперименты, не ограничиваясь заранее подготовленным набором результатов. Это достигается с помощью использования математических моделей, позволяющих определить результат любого эксперимента и соответствующее визуальное представление. К сожалению, подобные модели пока возможны для ограниченного набора опытов.
Эти подходы к созданию виртуальных лабораторий в разной степени использованы в известных зарубежных разработках. Например, образовательная среда Virtual Chemistry Laboratory, разработанная в Carnegie Mellon University (США), доступна через Интернет, но может распространяться и на компакт-дисках. Визуально она представляется в виде двумерных графических сцен, а ход химических экспериментов основан на математической модели (Yaron D. et al., 2001). Продукт Virtual Chemical Lab из Brigham Young University (США) поставляется на CD-ROM, использует трехмерную графику, а ход экспериментов в нем основан на наборе заранее запрограммированных фактов (Brian F., 2003). В доступной через Интернет Virtual Chemistry Laboratory из Oxford University (Великобритания) для демонстрации проводимых опытов используется большой набор видеофрагментов (Virtual chemistry - http://www.chem.ox.ac.uk/vrchemistry/).
Необходимо отметить, что возможности моделирования в образовательных мультимедиа продуктах во многом зависят от способа доставки образовательного контента. Очевидно, что для доставки через Интернет с его узкими информационными каналами лучше подходит двумерная графика. В то же время в электронных изданиях, поставляемых на CD-ROM, не требуется экономии трафика и ресурсов, и поэтому могут быть использованы трехмерная графика и анимация. Важно понимать, что именно объемные ресурсы - трехмерная анимация и видео - обеспечивают наиболее высокое качество и реалистичность визуальной информации. Однако объемы трехмерной анимации могут быть настолько велики, что даже возможности CD-ROM будут недостаточны для их хранения. Альтернативу объемным файлам анимации и видео, в которых используются последовательность готовых изображений, составляет более компактное представление трехмерных объектов. Синтезированная по этим моделям в реальном времени анимация также предоставляет большие возможности для создания трехмерной образовательной среды, моделирующей реальную лабораторию. Благодаря разумному сочетанию заранее подготовленной анимации и анимации, синтезированной в реальном времени трехмерных моделей, в условиях экономии ресурсов обеспечивается возможность реалистичного представления, как визуального окружения, так и действий учащегося во время проведения экспериментов. Такой подход и был выбран при разработке описанной в этой статье виртуальной химической лаборатории. Химическое оборудование, экспериментальные установки и визуализация сложных химических процессов представляются заранее подготовленными анимациями. В то же время, синтезированные в реальном времени трехмерные модели используются для моделирования химической посуды, жидких и твердых реактивов, действий учащихся в реальной лаборатории (школьники могут приливать из одного сосуда в другой, помещать реактивы в пробирки и доставать склянки с растворами с полок).