б) Аналогично рассмотрим вторую схему.
Общая емкость системы конденсаторов (рис.1,б) равна
Используя аналогию механических и электрических величин, найдем что общая жесткость пружин искомой механической системы находится из соотношения
Это соответствует параллельному соединению двух пружин(рис.2,б).
рис.2.Задача2На рис.3,а,б изображены колебательные контуры. Придумайте механические аналоги им.
рис.3,а
О т в е т. Аналогичная механическая система соответствующая рис.3,а,б должна содержать два тела массами
и , и пружину жесткостью k.а) Общая индуктивность системы при последовательном соединении катушек равна
Используя аналогию механических и электрических величин найдем, что общая масса
А это соответствует рис.4,а
Рис. 4.а
б) Аналогично рассматриваем вторую схему.
Общая индуктивность параллельно соединенных катушек находится из соотношения
Используя аналогию механических и электрических величин, найдем что общая масса катушек равна
Это соответствует рис.4,б
Задача3. Придумайте механическую систему, которая была бы аналогична электрической цепи, состоящей из конденсатора емкостью С и резистора сопротивлением R (рис. 5). Первоначальный заряд конденсатора равен qм. Ключ К замыкается в некоторый момент времени принимаемый за начальный.
Рис. 5.
О т в е т. Электрическую цепь, состоящую из емкости и сопротивления, можно представить как предельный случай электрического колебательного контура, в котором индуктивность настолько мала, что ею можно пренебречь.
Поэтому аналогичная механическая система будет представлять собой прикрепленное к пружине (жесткость К) тело с очень малой массой, но с значительным объемом, находящееся в поле действия силы вязкого трения с коэффициентом ß.
Задача4. Придумайте механическую динамическую аналогию электрической цепи, представленной на рис. 6. В начальный момент катушка индуктивностью L и резистор сопротивлением R отключены от источника постоянного тока с ЭДС .
Рис. 6.
О т в е т. Аналогичная механическая система состоит из тела, находящегося в поле тяжести Земли и расположенного внутри жидкости с коэффициентом вязкости Р. Если отпустить это тело, то оно падает в жидкости под действием силы тяжести FT= mg.
Задача5. Рассчитайте максимальное значение силы тока в цепи, изображенной на рис.7. До замыкания ключа заряд на конденсаторе равен q, второй конденсатор не заряжен. Воспользуйтесь электромеханической аналогией.
рис. 7.
Решение.
Здесь происходит превращение потенциальной энергии в кинетическую или в соответствии с аналогией энергия электрического поля конденсатора превращается в энергию магнитного поля катушки.
так как
итогда
.Отсюда значение максимальной силы тока равно
Задача 6. Найти максимальную скорость груза на пружине в вязкой среде при действии на него переменной силы F=10sin10t(H) (рис. 8). Масса - груза 0,1 кг, жесткость пружины 2 Н/м, вязкость среды 1 Н. м/с.
Рис.8
Р е ш е н и е. В связи с тем что такой более сложный процесс, какой представлен в условии этой задачи, в школьном курсе физики не изучается, снова обратимся к аналогии. Аналогичная электрическая система выглядит как колебательный контур, содержащий внешний источник переменного тока (рис. 9).
Рис.9
Из закона Ома для переменного тока (обозначения традиционные) максимальная сила тока
Установим соответствия характеристик механической и электрической систем: f
U: ß R :m L:K 1/C.Учитывая аналогичность систем, получаем:
=При подстановке следующих данных:
F=10Н,
=10с-1, ß=1 Н•м/с, w=0,1кг, K=2 Н/м окончательно получаем vm 1,28 м/с.Задача 7. Источник с ЭДС и нулевым внутренним сопротивлением соединен последовательно с катушкой индуктивности L и конденсатором С (рис. 10). В начальный момент времени конденсатор не заряжен. Найти зависимость от времени напряжения на конденсаторе после замыкания ключа.
рис.10.
Решение. Искать нужную зависимость, используя законы электромагнетизма, довольно сложно и не наглядно, поэтому целесообразно использовать механическую аналогию. На рис.11 приведена аналогичная механическая колебательная система. Аналогом источника с ЭДС может служить поле силы тяжести. При выдергивании подставки из-под прикрепленного к пружине груза начинаются его колебания. Он совершает гармоническое колебание около точки Xm, график которого дан на рис. 12. а. Уравнение координаты имеет вид:
xm-x(t)=xm cos wot,
или
x(t)=xm (1 - cos wot).
Рис. 11
Рис. 12
Аналогичное электрическое колебание (график дан на рис. 12, б) описывается следующими уравнениями:
q (t)=qм (1 – cos wot);
qм = С, q (t)=C (1 — cos wot) ,
U(t)= , U(f)= (1 — cos wot).
Здесь wo =
.В заключение отметим, что рассмотренные нами аналогии широко используются в научных исследованиях. Интересно, что принцип работы аналого-вычислительной машины основан на «поразительной аналогичности» механического и электрического процессов.
§4.Изучение волновых процессов.
Рассматривая вопроссы излучения и распространения любых волн, следует сформулировать условия, необходимые для образования и излучения волн:
1) наличие источника колебаний в некоторой точке;
2) возможность передачи колебаний от данной точке к соседним (роль среды);
3) наличие достаточной связи источника колебаний с передающей средой.