Смекни!
smekni.com

Педагогика в начальных классах (стр. 5 из 12)

На этапе закрепления умения решать задачи на нахождение неизвестных по двум разностям можно использовать упражнения аналогичные тем, которые предлагались при решении задач на пропорциональное деление. После введения задач на нахождение неизвестных по двум разностям второго вида.

По аналогичной методике следует провести работу по сравнению задач этих двух видов и сравнению их решении. Полезны также упражнения по сравнению задач на пропорциональное деле­ние и задач соответствующего вида на нахож­дение неизвестных по двум разностям.

После того как в процессе решения про­стых задач ученики усвоят связи между величинами: скоростью, временем и расстоя­нием, включаются составные задачи с эти­ми величинами различной математической структуры, причем задачи этих видов были введены ранее, но они включали другие величины (задачи на нахождение суммы или разности двух произведений или двух част­ных, задачи на нахождение четвертого пропорционального, на пропорциональное де­ление и др.). Среди составных задач особое внимание должно быть уделено задачам на встречное движение и в противоположных направлениях. Содержание этих задач включает новый элемент: здесь представле­но совместное движение двух тел, что требует специального рассмотрения.

До введения задач на встречное движе­ние важно провести соответствующую под­готовительную работу. Надо познакомить с движением двух тел навстречу друг другу. Такое движение могут продемонстрировать в классе вызванные ученики. Например, два ученика-пешехода начинают двигаться одновременно от двух противоположных стен навстречу друг другу, а при встрече останав­ливаются. Ученики наблюдают, что расстоя­ние между пешеходами все время умень­шалось, что, встретившись, они прошли все расстояние от стены до стены и что каж­дый затратил на движение до встречи одинаковое время. Под руководством учителя выполняется чертеж. Можно провести на­блюдение на улице за движением автома­шин, пешеходов, велосипедистов и т. п. Рас­ширить представления учащихся о встречном движении можно попутно с решением задач из учебника. С по­мощью упражнений надо выяснить, что зна­чит «вышли одновременно» пешеходы, авто­машины и т. п. и что при этом они были в пути до встречи одинаковое время. Необходимо также, чтобы ученики твердо усвоили связь между величинами: скоростью, временем и расстоя­нием при равномерном движении, т. е. умели решать соответствующие простые задачи.

При ознакомлении с решением задач на встречное движение можно на одном уроке ввести три взаимно обратные задачи. Сначала предложить задачу на нахождение расстоя­ния, которое пройдут до встречи при одно­временном выходе пешеходы, велосипедисты, поезда и т. п., если известны скорость каждого и время движения до встречи.

Ознакомление с задачами на движение в противоположных направлениях может быть проведено аналогично введению задач на встречное движение. Проводя подготовитель­ную работу, надо, чтобы ученики пронаблю­дали движение двух тел (пешеходов, авто­машин и т. п.) при одновременном их выхо­де из одного пункта. Ученики должны заметить, что при таком движении расстоя­ние между движущимися телами увеличи­вается. При этом надо показать, как вы­полняется чертеж.

При ознакомлении с решением задач этого вида тоже можно на одном уроке решить три взаимно обратные задачи, после чего выполнить сначала сравнение задач, а затем их решении.

На этапе закрепления умения решать такие задачи ученики выполняют различ­ные упражнения, как и в других случаях, в том числе проводят сравнение соответ­ствующих задач на встречное движение и движение в противоположных направлениях, а также сравнение решений этих задач. Эффективны на этом этапе упражнения на составление различных задач на движение по данным в таблице значениям величин и соответствующим выражениям.

В 3 классе ученики знакомятся с новым для них способом на нахождение четвертого пропорционального – способом отношения. Поскольку математическая структура этих задач знакома учащимся, то представляется возможность создать при их решении проблемную ситуацию, а именно: предложить решить задачу уже известным способом. В дальнейшем ученики решают задачи преимущественно самостоятельно, причем при затруднении можно предложить им записать задачу кратко. Разбор и здесь проводится с теми учащимися, которые сами не могут решить задачу.

В программе по математике нет ограничений в отношении подбора задач, поэтому учи­тель может по своему усмотрению включать задачи и другой математической структуры. Вместе с тем надо учитывать основные требования программы в отношении уровня умений решать текстовые арифметические задачи учащимися, оканчивающими началь­ную школу: они должны приобрести твердые умения решать простые арифметические за­дачи на все действия, а также должны уметь решать несложные составные задачи в 2—3 действия.

При алгебраическом способе ответ на вопрос задачи находится в результате составления решения уравнения.

При решении любой задачи алгебраическим способом после анализа содержания задачи выбирается неизвестное, обозначается буквой, вводится в текст задачи, а затем на основе выделенных в содержании задачи зависимостей составляются два выражения, связанные отношением равенства, что позволяет записать соответствующее уравнение. Найденные в результате решения уравнения корни осмысливаются с точки зрения содержания задачи, а корни не соответствующие условию задачи отбрасываются. Если буквой обозначено искомое, оставшиеся корни могут сразу дать ответ на вопрос задачи. Если буквой обозначено неизвестное, не являющееся искомым, то искомое находится на основе взаимосвязей его с тем неизвестным, которое было обозначено буквой.

В начальном курсе обучения дети также знакомятся с графическим способом. Опираясь только на чертеж легко дать ответ на вопрос задачи. Иногда решение задачи графическим способом связано не только с построением отрезков, но и с измерением их длин.

При обучении решению текстовых задач необходимо достигнуть двух взаимосвязан­ных целей — обучить: 1) решению опре­деленных видов задач; 2) приемам поиска решения любой задачи. Первая из них важна потому, что дает необходимый опыт и возможность выделить в решаемой задаче те подзадачи, решение которых известно. Кроме того, при решении каждой новой задачи можно использовать те спосо­бы и приемы, которые давали прежде положительные результаты. Но на практике приходится встречаться с задачами, при поиске решения которых никакой прежний опыт не помогает и требуется догадка, «открытие». Можно ли помочь ученику прийти к такой догадке, дать ему неко­торое средство, помогающее «открытию?» При реализации идей развивающего обу­чения такая цель представляется даже более важной, так как помогает развитию таких когнитивных способностей, как умение проанализировать новую ситуацию, на основе проведенного анализа принять правиль­ное решение, выработать план действий и суметь осуществить его.

Для того чтобы решить поставленную задачу, необходимо построить ее математическую модель,а затемприменить известные методы для нахож­дения числового значения искомых величин. При этом основная трудность как раз и состоит в переходе от текста к математи­ческой модели. Для построения математи­ческой модели необходимо, прежде всего, реконструировать в воображаемом внутрен­нем плане описываемую в задаче си­туацию, затем выделить в ней существен­ные признаки и абстрагироваться от всего того, что является несущественным с точки зрения поиска ответа на поставленный вопрос. Например: «Купец купил 138 аршин черного и синего сукна за 540 р. Спрашивается, сколько аршин того и другого сукна купил купец, если синее сукно стоило 5 р. за аршин, а черное — 3 р. за аршин?» Сначала он пытается разделить 540 на 138, затем 540 на 5 и т. п.

Существенным является то, что речь идет о купце, о сукне синего и черного цвета. Поэтому задача не изменится, если ее сформули­ровать так: куплено два сорта материи по цене 3 р. и 5 р. за метр. Сколько куп­лено материи каждого сорта, если всего было куплено 138 м, а вся покупка стоила 540 р.?

Несущественным является и то, что речь идет о некоторой коммерческой опе­рации. Задачу можно было бы сформу­лировать и так:из 540 м материи сшили 138 платьев и блузок. Сколько сшили платьев и сколько блузок, если известно, что на платье расходовали по 5 м ткани, а на блузку — по 3 м?

Что же существенно? То, что в задаче рассматриваются величины, связанные пря­мой пропорциональной зависимостью: коли­чество купленной материи и ее стоимость (количество сшитых изделий и израсходо­ванная ткань); то, что известна стоимость покупки (количество затраченной ткани), це­на каждого вида материи (норма расхода на каждый вид изделия), количество всей купленной материи (вся израсходованная ткань); то, что неизвестно, сколько материи каждого вида куплено (сколько изделий каждого вида сшито).

Для поиска решения необходимо вы­явить зависимости между указанны­ми величинами. Согласно существующей методике это делается с помощью некото­рого рассуждения. Но, как показывает практика, подобное рассуждение трудно воспринимается младшими школьниками. Возникает вопрос, как провести необходи­мое для поиска решения задачи рассуж­дение наиболее доступным младшему школь­нику образом. Для этого можно предста­вить всю существенно важную информа­цию в наглядной и легко обозримой форме — в виде картинки, т. е. построить некоторую промежуточную графическую модель.

Почему предпочтение отдается графиче­ским методам? Графическая информация легче для восприятия, более емкая (лю­бой рисунок достаточно долго пришлось бы описывать словами), и, вместе с тем, может быть достаточно условной.