Требования, предъявляемые к графической модели предметной области задачи, можно сформулировать так. Она должна:
— «опредмечивать» абстрактные понятия;
— нести информацию лишь о существенных признаках задачи;
— давать возможность непосредственно усматривать зависимость между величинами, о которых идет речь в задаче;
— допускать ее практические преобразования;
— строиться на основании анализа текста задачи;
— не предъявлять неумеренных требований к графическим навыкам учащихся.
Рисование графической схемы, во-первых, (вставляет ученика внимательно читать текст задачи, во-вторых, позволяет перенести часть умственных действий в действия практические и закрепить результат в виде материального объекта, в-третьих, дает возможность искать решение самостоятельно.
Рассмотрим задачу: «В колхозе 40 автомашин – легковых и грузовых, причем на каждую легковую машину приходится четыре грузовые. Сколько легковых и сколько грузовых машин в колхозе?» Изобразим каждую машину палочкой (40 машин – 40 палочек) известно, что на каждую легковую машину приводится 4 грузовые. Поэтому отложим одну палочку – это легковая машина. Под ней положим 4 палочки – это 4 грузовые машины. Будем поступать так до тех пор, пока все 40 палочек не окажутся разложены. Чтобы ответить на вопрос задачи, достаточно сосчитать, сколько палочек положено в верхнем ряду и сколько палочек положено в нижнем ряду. Такое решение задачи можно назвать практическим. Это еще один из способов решения текстовых задач.
Обучение детей решению задач разными способами важно. Эта работа развивает логическое мышление, интерес к уроку математики.
1.3. Особенности работы над задачами по системе Л.В. Занкова.
Начальная школа все дальше и дальше уходит от традиционной методики математики. Появляются различные типы школ, вводятся альтернативные программы и учебники.
Наиболее распространенной среди альтернативных систем является дидактическая система, разработанная под руководством академика Л. В. Занкова. Эту систему учитель выбирает не только потому, что она привлекает своими принципами: обучение должно вестись на высоком уровне трудности, в быстром темпе; ведущая роль в обучении математике отводится теории, причем теоретические знания тесно связаны с обязательным осознанием учащимися процесса обучения.
Однако наблюдение за работой учителя, анализ результатов самостоятельных и контрольных работ говорит о том, что именно эти принципы в практике обучения реализуются недостаточно полно.
Прежде всего настораживает то, что зачастую наряду с учебниками математики И. Н. Аргинской на партах лежат и учебники М. И. Моро и др.
Конечно, творчески работающий учитель никогда не ограничится одним учебником, а будет стремиться использовать все богатство заданий других пособий, методических приемов, выбирая то, что наиболее подходит именно для его учеников. И с этим нельзя не согласиться.
Однако учитель должен задуматься и над тем, что обучение учащихся по двум учебникам, сильно отличающимся как содержанием, так и методическими подходами, приводит к нарушению целостности научно-обоснованной системы и порождает формализм и поверхностное изучение материала, приводит к перегрузке учащихся. Особенно это заметно при обучении решению текстовых задач, ибо, как показывает практика, именно здесь у учителя и учащихся возникают затруднения.
Это порождает крайне неверное мнение, что по системе Л. В. Занкова могут обучаться лишь избранные дети и работать избранные учителя.
Не будем утверждать или дискутировать о том, усваивают или не усваивают дети материал (известно, что методическая система Л. В. Занкова зарекомендовала себя и доказала высокую эффективность усвоения математических знаний и развития мышления учащихся), как и то, все или не все учителя смогут работать по данной системе.
Хотелось бы обратить внимание на то, что значительному большинству учителей (даже тем, кто прослушал курс переподготовки, где рассматривались и раскрывались принципы обучения, приемы и методы работы) нужна основательная помощь, которая заключалась бы в конкретизации методических приемов и методов работы, ибо отсутствие таковых приводит к противоречию между предлагаемыми принципами и их реализацией в практике.
Попытаемся проанализировать некоторые затруднения, возникающие у учителя и учащихся при решении текстовых задач.
Алгебраический метод решения задач вводится с I класса и уже к III классу становится основным методом решения. Как известно, алгебраический метод решения задач развивает теоретическое мышление, способность к обобщению, формирует абстрактное мышление и, кроме того, обладает такими преимуществами, как краткость записи и рассуждений при составлении уравнений, экономит время. Видимо, эти преимущества и привели к тому, что значительная часть учителей отдает предпочтение при решении задач алгебраическому методу.
Однако существует и другое мнение о том, что арифметический метод решения задач развивает мышление не в меньшей степени, так как ученику необходимо разбить составную задачу на простые и на основе логически строгих рассуждении в определенной последовательности решить их. Арифметический способ решения требует большего умственного напряжения, что положительно сказывается на развитии умственных способностей, математической интуиции, на формировании умения предвидеть реальную жизненную ситуацию. Именно поэтому арифметический метод решения задач должен быть если не ведущим, то хотя бы полноправным методом решения задач в начальных классах.
Следует отметить, что арифметический способ решения доступен не всем учащимся так как мышление младшего школьника ноет наглядно-образный характер. Конкретное мышление младших школьников проявляется е том, что они могут успешно решить ту или иную задачу в том случае, если опираются не действия с реальными предметами. Поэтому для осознанного выбора действия, посредством которого решается задача, необходимо иллюстрировать задачную ситуацию, чтобы учащиеся осознали, почему и зачем выполняется то или иное действие.
Работу по формированию умения решать задачи "на предположение" арифметическим способом целесообразно начинать с первых задач, включенных в учебник математики, так как они содержат небольшие данные и задачную ситуацию можно легко проиллюстрировать.
Особого внимания и творческого подхода требуют задачи, предлагаемые в конце учебника. Именно на данном этапе обучения должно проявляться умение применять различные приемы и методы решения задач, умение анализировать, рассуждать, предлагать и проверять эти предположения, делать соответствующие выводы. Поэтому при решении задач учителю необходимо организовать работу таким образом, чтобы учащиеся находили различные способы решения, сравнивали их и выбирали наиболее легкий и рациональный.
Однако значительная часть учителей, следуя указаниям, предложенным к данной задаче, проводит работу над задачей, которая недостаточно полно реализует как обучающие, так и развивающие функции.
Чтобы усилить развивающий аспект обучения, полезно решить задачу арифметическим способом. Осознать выбор действий, посредством которых решается задача, поможет правильно выбранная наглядная интерпретация задачи.
Метод перебора при решении задач оказывает положительное влияние на развитие мышления учащихся, так как выбор предполагаемого ответа, соотнесение этого данного с условием задачи помогает осмыслению связей и зависимостей между величинами, входящими в задачу, развивает умение предвидеть, вырабатывает интуицию и последовательность рассуждении.
При сравнении способов решения выясняется, что одни учащиеся отдали предпочтение арифметическому способу, другие – по способу подбора. Тем не менее систематическая работа по решению задач разными способами, сравнение решений и их обсуждение, выбор рационального дает возможность лучше осознать связи и зависимости между величинами, формирует умение рассуждать, делать выводы и обосновывать их.
Все сказанное дает основание предполагать, что затруднения возникающие у учителя в процессе работы порождают мнение о том, что по данной системе развивающего обучения могут работать лишь избранные учителя. Однако это не так.
Учителю нужны методическая помощь, методические разработки и рекомендации, которые позволили бы сэкономить время на подготовку к уроку, сохранить уверенность, силу и энергию, необходимую для плодотворной и творческой работы.
1.4. Как составить и решить задачу по системе Д.Б. Эльконина – В.В. Давыдова.
Начнем с очень простого, на первый взгляд, вопроса: "Что такое задача?" Или "Как узнать задачу?" Дети обязательно скажут: "Это там, где слова", ''Задача - это вопрос", "В ней обязательно что-то происходит". Правда, у нас очень умные дети? Тогда предложите им выбрать из предложенных записей задачу:
1. На склад привезли 3 т картофеля.
2. Сколько цветов в букете?
3. На празднике было 20 красных шаров, 10 зеленых и 15 синих. Сколько всей шаров было на празднике?
4. На сколько ящик массой 15 кг тяжелее ящика массой 8 кг?
5. В вазе 5 яблок и 7 груш. Найди общее количество фруктов.
С пунктами 1 и 2 не возникает проблемы, так как в первом нет вопроса, а во втором нет данных ("ничего неизвестно"). Текст под номером 3 позволяет сформулировав основные элементы задачи - условие и вопрос. А дальше, не давая детям опомниться вычеркнем тексты под номером 4 ("в нем нет условия") и номера 5 ("нет вопроса") ипопросите оценить ваши действия. При внимательном рассмотрении окажется, что условие и вопрос задачи могут быть сформулированы в одном вопросительном предложении, а бывает и так, то вопрос "спрятан" в указание совершить какие-либо действия. Итак, казалось бы, простой вопрос о задаче открывает целую серию исследовательских уроков. Они будут продолжены по мере накопления возможных оснований для сравнения и классификации задач. Завершить данный урок можно открытием "маленькой тайны" (чем успокоим того ребенка, которого взадаче пока волнуют только действующие лица): задача имеет сюжет. Это слово может стать вашим "подарком" детям, а так как принято благодарить за презент, попросите ребят придумать разные задачки на какую-либо тему (тему дети могут выбрать сами).