Смекни!
smekni.com

Пути повышения эффективности обучения решению задач (стр. 2 из 3)

- задачи с абстрактным содержанием;

- задачи с техническим содержанием;

- задачи с историческим содержанием;

- занимательные задачи.

Задачи с техническим содержанием – задачи, в которых отражена связь физики с техникой или производством. Например: Почему для постройки сверхскоростных реактивных самолетов используют специальные жароустойчивые сплавы?

Подобные задачи учитель может составлять сам, используя сообщения из газет, журналов, радио и телевидения. При решении таких задач все внимание учеников сосредоточено на раскрытии новых терминов.

Задачи с историческим содержанием – это такие задачи, в условиях которых использованы исторические факты об открытии законов физики или каких-либо изобретений. Они имеют большое познавательное и образовательное значение. Например, в 7 кл., при изучении закона Архимеда для газов, можно решить задачу: Ученый Аристотель, живший в IV веке до н.э. обнаружил, что кожаный мешок, надутый воздухом, и тот же мешок без воздуха, сплющенный, имеют одинаковый вес. На основании этого опыта он сделал неверный вывод, что воздух не имеет веса. В чем заключалась ошибка Аристотеля?

Занимательные задачи – это такие задачи, содержание которых дается в занимательной форме. Они могут быть качественными, экспериментальными или количественными.

Необычная постановка вопроса в таких задачах и последующее обсуждение результатов обычно глубоко заинтересовывают учащихся. К сожалению, в сборниках задач по физике мало задач занимательного характера. Поэтому их приходится подбирать учителю из других источников. Например: Я.И.Перелыман «Занимательная физика», «Физика на каждом шагу»; В.И.Зибера «Задачи-опыты по физике». Пример занимательной задачи: почему не удается встать со стула, не нагибая корпуса вперед? Проверить на опыте и т.д.

§3. Структура решения задач.

Способы решения задач.

Возникает вопрос: как же оформить решение задачи, из каких компонентов состоит решение задачи?

В краткой записи содержания физической задачи указывают физическое тело или явление, о котором идет речь. Дополнительные же табличные данные записывают ниже вопроса или оставляют для них 1-2 строчки после записи данных величин, т.е. пишут данные и что надо найти, затем переводят неосновные единицы величин в СИ, далее идет графа-анализ, записывают искомую формулу, затем идет выполнение вычислений в графе решение. Например, дана задача: Определить сопротивление нихромовой проволоки, длина которой 150 м., а площадь поперечного сечения – 0,2 мм2.

Дано:Нихром. провол.l = 150 м.;S = 0,2 мм2

СИ

0,2·10-6м2

Анализ

l

R = r –––

S

Решение

110·10-8Ом·м ·150 м

R = –––––––––––––––––– =

0,2·10-6 м2

= …

R – ?r = 110·10-8Ом·м. Ответ:

Для решения количественных задач применяют следующие способы:

- алгебраический;

- геометрический;

- тригонометрический;

- графический.

Я начну с рассмотрения решения физических задач алгебраическим способом, который заключается в том, что задачу решают с помощью формул и уравнений. Это основной способ решения (см. задачу выше, решенную алгебраическим способом).

Геометрический способ решения задач заключается в том, что при решении задач используют теоремы геометрии. Например, довольно часто используют теорему о длине катета, лежащего против угла 30о, теорему Пифагора и др. Особенно часто геометрический способ решения применяют при решении задач на сложение сил. Например: Автомобиль массой 5 т. движется с постоянной скоростью по прямой горизонтальной дороги. Коэффициент трения шин о дорогу равен 0,03. Определите силу тяги, развиваемую двигателем.

Дано:m = 5 т.m = 0,03u = const

СИ

5·103кг.

Анализ

На автомобиль действуют 4 силы: сила тяги. Fт, сила трения Fтр, сила тяжести mg и сила реакции дороги N:

Fтяж – ?g = 9,8 м/с2

y

N

Fтр 0 Fтx

mg

N + Fт + mg + Fтр = ma

0x: 0 + Fт + 0 – Fтр = 0

0y: N + 0 – mg + 0 = 0

=> N = mg, Fтр = mN,

Fт = mmg

Решение.

Fт = 0,03 · 5·103 кг · 9,8 м/с2 = 1470 Н.

Ответ: 1470 Н.

Тригонометрический метод заключается в том, что в анализе используют тригонометрические соотношения, например формулы
u= u0·cosa, u= u0·sina. Но этот способ решения применяется редко.

Графический способ заключается в том, что при решении задачи используют график. В одних случаях по данным, полученным из графика, находят ответ на вопрос задачи. В других случаях, наоборот, определенные зависимости между физическими величинами выражают графически.

Например: На рисунке изображен график изменения температуры олова в зависимости от времени. Какие процессы происходят с оловом на участках АВ, ВС, CD? Какова температура плавления олова?


t, oС D

232 B

200 C

100

0 t, мин.

–30 A 10 20 30

Решение:

1. Участок графика АВ соответствует нагреванию олова от –30 оС до 232 оС.

Участок ВС – плавлению, температура при этом не меняется.

Участок CD – нагреванию жидкого олова.

2. tпл = 232 оС.

Существуют некоторые приемы, развивающие интерес к решению задач, т.е. приемы, которые используются для вовлечения учащихся в процесс решения задач и поддержания к нему интереса.

Прием 1 – задача без вопроса.

На уроке физики даются учителем расчетные задачи, в которых не указано, какие величины надо определить. Например:

«Масса кирпича 4 кг. Определите все, что можно». Семиклассники определяют объем, силу тяжести, вес кирпича, выталкивающую силу, действующую на него в воде, силу, которую нужно приложить, чтобы удержать кирпич в воде.

Прием 2 – задачи в виде таблицы. При рассмотрении однотипных явлений учитель составляет таблицу, в часть клеток вписываются известные значения величин, а в другие части ставлю знаки вопроса (соответствующие им величины нужно найти). Например, в 11 классе по теме «Световые кванты» предлагается учащимся таблица

Виды

излучения

Параметры
l, м. n, Гц. E, эВ. m, а.е.м. P, кг·м/с
Инфракрасное 10-5 ? ? ? ?
Видимое ? 5,4·1015 ? ? ?

Прием третий – Сочини сам.

Учащимся предлагается: пользуясь справочником составить задачу и записать ее в тетрадь, затем ученики, сидящие на одной парте, меняются тетрадями и решают задачу соседа. После решения вновь обмениваются тетрадями: «сочинитель» проверяет решение своей задачи.

§4. Педагогические основы обучения решения задач по физике.

Методика решения задачи зависит от многих условий: от ее содержания, подготовки учащихся, поставленных перед ними целей и т.д. Тем не менее существует ряд общих для большинства задач положений, которые следует иметь в виду при их решении.

Количество задач в курсе физики средней школы весьма велико. В 7-11 классах учащиеся должны усвоить около 170 основных формул. Поскольку в каждую формулу входит не менее трех задач, величин, то очевидно, только на основные физические закономерности школьники должны решить сотни задач.

Главное условие успешного решения задач – знание учащимися физических закономерностей, правильное понимание физических величин, а также способов и единиц их измерения. К обязательным условиям относится и математическая подготовка учеников. Затем на первый план выступает обучение как по некоторым общим, так и по специальным приемам решения задач определенных типов.

Идеальным было бы создание для них алгоритмов решения, т.е. точных предписаний, предусматривающих выполнение элементарных операций, безошибочно приводящих к искомому результату. Однако многие задачи не рационально решать, а иногда и просто нельзя решить алгоритмическим путем. В одних случаях для решения задачи вообще не имеется алгоритма, в других он оказывается очень сложным и громоздким и предполагает перебор громадного числа возможных вариантов. Для большинства физических задач можно указать лишь некоторые общие способы и правила подхода к решению, которые в методической литературе иногда преувеличенно называют алгоритмами, хотя скорее это «памятки» или «предписание» алгоритмического типа. И систематическое применение общих правил и предписаний при решении типовых задач формирует у школьников навыки умственной работы, освобождает силы для выполнения более сложной творческой деятельности.