Смекни!
smekni.com

Развитие логического мышления младших школьников при обучении построению вспомогательных моделей в процессе решения текстовых задач (стр. 4 из 7)

3к.

П.

?

Знаковые модели могут быть выполнены как на естественном, так и на математическом языке. К знаковым моделям, выполненном на естественном языке, можно отнести краткую запись задачи, таблицы. Например:

Д. - 4к.

П. - ?, на 3к. >

Таблица как вид знаковой модели используется главным образом тогда, когда в задаче имеется несколько взаимосвязанных величин, каждая из которых задана одним или несколькими значениями. Например, «Петя купил 5 марок по 10 рублей каждая и 3 открытки по 5 рублей каждая. Сколько всего денег он потратил на свою покупку?»

Знаковыми моделями текстовых задач, выполненными на математическом языке, являются: выражение, уравнение, система уравнений, запись решения задачи по действиям. Поскольку на этих моделях происходит решение задачи, их называют решающими моделями. Остальные модели, все схематизированные и знаковые, выполненные на естественном языке, - это вспомогательные модели, которые обеспечивают переход от текста задачи к математической модели. [24, 121]

Использование вспомогательных моделей на уроках математики в начальной школе, несомненно, влечёт за собой развитие логического мышления. Рассмотрим систему упражнений на построение вспомогательных моделей к текстовым задачам, которая способствует развитию логического мышления детей.

2. 2. Система заданий, которая способствует развитию мыслительных операций.

Рассмотрим дополненную с учётом сделанных выводов систему заданий, которую можно использовать при построении вспомогательных моделей на уроках математики для развития логического мышления.

Задания, направленные на развитие анализа и синтеза.

1. Соединение элементов в единое целое.

1) В одном пучке 12 редисок, а в другом – на 2 редиски меньше. Обозначь каждую редиску кругом и покажи, сколько редисок во втором пучке. Покажи, сколько редисок в двух пучках. [7, 162]

2) У хозяйки 9 кур, а уток – на 4 меньше. Обозначь каждую птицу кругом и покажи на рисунке, сколько всего птиц у хозяйки.

Маша сделала такой рисунок:

всего птиц

у хозяйки

А Миша – такой:

всего птиц

у хозяйки

Кто прав: Миша или Маша? [7, 172]

3) В одной корзине 20 кг яблок, а в другой – 17 кг. Пользуясь данными отрезками, покажи массу яблок в двух корзинах.

20

17

[8, 16]

2. Поиск различных признаков предмета:

Андрей и Саша прыгали в длину. При первой попытке Андрей прыгнул на 35 см дальше, чем Саша. При второй Саша улучшил свой результат на 40 см, а Андрей прыгнул так же, как и при первой. Кто прыгнул дальше при второй попытке: Андрей или Саша? На сколько? Догадайся! Как записать данные этой задачи на схеме?


[8, 92]

3. Узнавание или составление предмета по заданным признакам:

1) Составление задачи по модели.

Составь по краткой записи задачу и реши её:

Было - ?

Улетели – 8 в.

Осталось – 7в.

[15, 52]

2) Составление модели к задаче.

Масса курицы 2 кг, а гуся 6 кг. Пользуясь отрезками, покажи, на сколько гусь тяжелее курицы.

[8, 22]

4. Рассмотрение данного объекта с точки зрения различных понятий.

Составление по рисунку нескольких задач.

Рассмотри рисунок и составь по нему задачи.

[15, 32]

5. Постановка различных заданий к данному математическому объекту.

1)У Вовы 74 марки, а у Миши на 8 марок больше. Каким отрезком обозначены марки Вовы? Каким отрезком обозначены марки Вовы? Каким отрезком – марки Миши?


Построй отрезок, который будет показывать, сколько марок у Вовы и у Миши вместе.

Построй отрезок, который будет показывать, на сколько марок у Миши больше, чем у Вовы.

[8, 18]

2) У Вовы открыток в 2 раза больше, чем у Олега, а у Коли в 3 раза больше, чем у Вовы. Нарисуй схему, которая соответствует данному условию, и ответь на вопросы:

а) Во сколько раз у Коли открыток больше, чем у Олега?

б) Во сколько раз у Олега открыток меньше, чем у Вовы?

в) Во сколько раз у Вовы открыток меньше, чем у Коли?

[9, 62]

Задания, направленные на формирование умения классифицировать.

К данному виду относятся задания на соотнесение нескольких задач с несколькими моделями.

1) Чем похожи тексты задач? Чем отличаются?

В первой книге 17 страниц. Во второй на 6 страниц меньше, чем в первой. Сколько страниц во второй книге?

Выбери схему, которая соответствует каждой задаче: