Фрагмент 4.
II. Устный счет.
- Урок начнем с небольшой экскурсии в "геометрический лес".
Дети, мы с вами попали в необычный лес. Чтобы в нем не заблудиться, надо назвать геометрические фигуры, которые "спрятались" в этом лесу. Назовите геометрические фигуры, какие вы здесь видите.
Задание на повторение понятия прямоугольника.
- Найдите соответствующие пары, чтобы при их сложении получалось три прямоугольника.
На этом уроке использовалась игра "Танграм" – математический конструктор. она способствует развитию рассматриваемых нами видов мышления, творческой инициативы, смекалки (см. приложение №4).
Для составления плоскостных фигур по образу необходимо не только знание названия геометрических фигур, их свойств и отличительных признаков, но и умение представить, вообразить, что получится в результате соединения нескольких фигур, зрительно расчленить образец, представленный контуром или силуэтом, на составляющие его части.
Обучение детей игре "Танграм" проводилось в четыре этапа.
1 этап. Ознакомление детей с игрой: сообщение названия, рассматривание отдельных частей, уточнение их названия, соотношение частей по размерам, усвоение способов соединения их между собой.
2 этап. Составление сюжетных фигур по элементарному изображению предмета.
Составление предметных фигур по элементарному изображению состоит в механическом подборе, копировании способа расположения частей игры. Необходимо внимательно рассмотреть образец, назвать составные части, их расположение и соединение.
3 этап. Составление сюжетных фигур по частичному элементарному изображению.
Детям предлагаются образцы, на которых указано место расположения одной – двух составных частей, остальные они должны расположить самостоятельно.
4 этап. Составление сюжетных фигур по контурному, или силуэтному, образцу.
На этом уроке было знакомство с игрой "Танграм"
Фрагмент 5.
- Это древняя китайская игра. В целом это квадрат, разделенный на 7 частей. (показ схемы)
- Из этих частей вы должны сконструировать изображение свечи. (показ схемы)
Тема: Круг, окружность, их элементы; циркуль, его использование, построение окружности с помощью циркуля. "Волшебный круг", составление различных фигур из "волшебного круга".
Этот урок послужил развитию умения анализировать, сравнивать, логического мышления, наглядно-действенного и наглядно-образного мышления, воображения.
Примеры заданий на развитие наглядно-действенного и наглядно-образного мышления.
Фрагмент 6.
(после разъяснения и показа учителя, как начертить окружность с помощью циркуля, дети выполняют такую же работу).
- Ребята, у вас на столах лежит картон. Начертите на картоне окружность радиусом 4 см.
Затем, на листах красного цвета учащиеся чертят окружность, вырезают круги, с помощью карандаша и линейки делят круги на 4 равные части.
Одну часть отделяют от круга (заготовка для шляпки гриба).
Изготавливают ножку для гриба, склеивают все части.
Составление предметных картинок из геометрических фигур.
- В "Стране круглых фигур" жители придумали свои игры, в которых используются круги, разделенные на различные фигуры. Одна из таких игр называется "Волшебный круг". С помощь. этой игры можно выложить различных человечков из геометрических фигур, составляющих круг. А человечки эти необходимы для того, чтобы собирать грибы, изготовленные вами сегодня на уроке. У вас на столах лежат круги, разделенные линиями на фигуры. Возьмите ножницы и разрежьте круг по намеченным линиям.
Затем учащиеся выкладывают человечков.
3.3. Обработка и анализ материалов эксперимента.
После проведения интегрированных уроков по математике и трудовому обучению мы провели констатирующее исследование.
Участвовала та же группа учащихся, использовались задания предварительного эксперимента с целью выявления, на сколько процентов повысился уровень развития мышления младшего школьника после проведения интегрированных уроков математики и трудового обучения. После проведения всего эксперимента вычерчивается диаграмма, из которой можно увидеть, на сколько процентов повысился уровень развития наглядно-действенного и наглядно-образного мышления детей младшего школьного возраста. Делается соответствующий вывод.
Методика 1. "Кубик Рубика"
После проведенния этой методики были получены следующие результаты:
№ п\п | Ф. И. учащегося | Задание | Общий результат (балл) | Уровень развития наглядно-дей ст-венного мыш- ления | ||||||||
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | ||||
1 | Кушнерев Александр | + | + | + | + | + | + | + | + | - | 8 | высокий |
2 | Данилина Дарья | + | + | + | + | + | + | + | - | - | 6,3 | высокий |
3 | Кирпичев Алексей | + | + | + | + | + | - | - | - | - | 3,5 | средний |
4 | Мирошников Валерий | + | + | + | + | + | + | - | - | - | 4,8 | высокий |
5 | Еременко Марина | + | + | + | + | + | - | - | - | - | 3,5 | средний |
6 | Сулейманов Ренат | + | + | + | + | + | + | + | + | + | 10 | очень высокий |
7 | Тихонов Денис | + | + | + | + | + | + | + | - | - | 6,3 | высокий |
8 | Черкашин Сергей | + | + | + | - | - | - | - | - | - | 1,5 | средний |
9 | Тенизбаев Никита | + | + | + | + | + | + | + | + | + | 10 | очень высокий |
10 | Питимко Артем | + | + | + | - | - | - | - | - | - | 1,5 | средний |
Из таблицы видно, что 2 ребенка имеют очень высокий уровень развития наглядно-действенного мышления, 4 ребенка – высокий уровень развития, 4 ребенка – средний уровень развития.
Методика 2. "Матрица Равена"
Результаты этой методики такие (см. Приложение №1):
2 человека имеют очень высокий уровень развития наглядно-образного мышления, 4 человека – высокий уровень развития, 3 человека – средний уровень развития и 1 человек – низкий уровень.
Методика 3. "Лабиринт"
После проведения методики были получены следующие результаты (см. Приложение 2):
1 ребенок – очень высокий уровень развития;
5 детей – высокий уровень развития;
3 ребенка – средний уровень развития;
1 ребенок – низкий уровень развития;
Составляя результаты диагностической работы с результатами методик, мы получили, что 60% испытуемых имеют высокий и очень высокий уровень развития, 30% - средний уровень и 10% - низкий уровень.
Динамика развития наглядно-действенного и наглядно-образного мышления учащихся представлена на диаграмме:
Итак, мы видим, что результаты стали намного выше, уровень развития наглядно-действенного и наглядно-образного мышления младшего школьника значительно повысился, это говорит о том, что проведенные нами интегрированные уроки математики и трудового обучения существенно улучшили процесс развития этих видов мышления второклассников, что явилось основанием доказательства правильности выдвинутой нами гипотезы.
Заключение.
Развитие наглядно-действенного и наглядно-образного мышления при проведении интегрированных уроков математики и трудового обучения, как показало наше исследование, является очень важной и актуальной проблемой.
Исследуя эту проблему, мы подобрали методы диагностики наглядно-действенного и наглядно-образного мышления применительно к младшему школьному возрасту.
Для улучшения геометрических знаний и развития рассматриваемых видов мышления нами были разработаны и проведены интегрированные уроки математики и трудового обучения, на которых детям понадобились не только математические знания, но и трудовые умения и навыки.
Интеграция в начальной школе, как правило, имеет количественный характер – "немного обо всем". Это значит, что дети получают все новые и новые представления о понятиях, систематические дополняя и расширяя круг уже имеющихся знаний (двигаясь в познании по спирали). В начальной школе интеграцию целесообразно строить на объединении достаточно близких областей знаний.
В наших уроках мы попытались объединить два разноплановых по способу овладения ими учебных предмета: математику, изучение которой носит теоретический характер, и трудовое обучение, формирование умений и навыков в котором носит практический характер.
В практической части работы мы провели изучение уровня развития наглядно-действенного и наглядно-образного мышления до проведения интегрированных уроков математики и трудового обучения. Результаты первичного исследования показали, что уровень развития этих видов мышления носит слабый характер.
После проведения интегрированных уроков было проведено контрольное исследование с помощью той же диагностики. Сравнивая полученные результаты с выявленными ранее, мы установили, что эти уроки оказались эффективны для развития рассматриваемых видов мышления.
Таким образом, можно сделать вывод, что интегрированные уроки математики и трудового обучения способствуют развитию наглядно-действенного и наглядно-образного мышления.
Список использованной литературы:
1. | Абдулин О. А. Педагогика. М.: Просвещение, 1983. |
2. | Актуальные вопросы методики преподавания математики.: Сборник трудов. –М.:МГПИ, 1981 |
3. | Артемов А. С. Курс лекций по психологии. Харьков, 1958. |
4. | Бабанский Ю. К. Педагогика. М.: Просвещение, 1983. |
5. | Бантева М. А., Бельтюкова Г. В. Методика преподавания математики в начальных классах. – М. Просвещение, 1981 |
6. | Баранов С. П. Педагогика. М.: Просвещение, 1987. |
7. | Беломестная А. В., Кабанова Н. В. Моделирование в курсе "Математика и онст-руирование". // Н. Ш., 1990. - №9 |
8. | Болотина Л. Р. Развитие мышления учащихся // Начальная школа - 1994 - №11 |
9. | Брушлинская А. В. Психология мышления и кибернетика. М.: Просвещение, 1970. |
10. | Волкова С. И. Математика и конструирование // Начальная школа. - 1993 - №1. |
11. | Волкова С. И., Алексеенко О. Л. Изучение курса "Математика и конструирова-ние". // Н. Ш. – 1990. - №1 |
12. | Волкова С. И., Пчелкина О. Л. Альбом по математике и конструированию: 2 класс. М.: Просвещение, 1995. |
13. | Голубева Н. Д., Щеглова Т. М. Формирование геометрических представлений у первоклассников // Начальная школа. - 1996. - №3 |
14. | Дидактика средней школы / Под ред. М. Н. Скаткина. М.: Просвещение, 1982. |
15. | Житомирский В. Г., Шеврин Л .Н. Путешествие по стране Геометрии. М.:Педагогика - Пресс, 1994 |
16. | Зак А. З. Занимательные задачи для развития мышления // Начальная школа. 1985. №5 |
17. | Истомина Н. Б. Активация учащихся на уроках математики в начальных классах. – М. Просвещение, 1985. |
18. | Истомина Н. Б. Методика обучения математике в начальных классах. М.: Линка-пресс, 1997. |
19. | Коломинский Я. Л. Человек: психология. М.:1986. |
20. | Крутецкий В. А. Психология математических способностей школьников. М.: Просвещение, 1968. |
21. | Кудрякова Л. А. Изучаем геометрию // Начальная школа. - 1996. - №2. |
22. | Курс общей, возрастной и педагогической психологии: 2/под. Ред. М. В. Гамезо. М.: Просвещение, 1982. |
23. | Марцинковская Т. Д. Диагностика психического развития детей. М.: Линка-пресс, 1998. |
24. | Менчинская Н. А. Проблемы учения и умственного развития школьника: Избранные психологические труды. М.: Просвещение, 1985. |
25. | Методика начального обучения математике. /Под общ. ред. А. А. Столяра, В. Л. Дроздова – Минск: Высш. школа, 1988. |
26. | Моро М. И., Пышкало Л. М. Методика обучения математике в 1 – 3 кл. – М.: Просвещение, 1978. |
27. | Немов Р. С. Психология. М., 1995. |
28. | О реформе общеобразовательной профессиональной школы. |
29. | Пазушко Ж. И. Развивающая геометрия в начальной школе // Начальная школа. - 1999. - №1. |
30. | Программы обучения по системе Л. В. Занкова 1 – 3 классы. – М.: Просвещение, 1993. |
31. | Программы общеобразовательных учебных заведений в РФ начальных классах (1 – 4 ) – М.: Просвещение, 1992. Программы развивающего обучения. (система Д. Б. Эльковнина – В. В. Давыдова) |
32. | Рубинштейн С. Л. Проблемы общей психологии. М., 1973. |
33. | Стойлова Л. П. Математика. Учебное пособие. М.: Академия, 1998. |
34. | Тарабарина Т. И., Елкина Н. В. И учеба, и игра: математика. Ярославль: Академия развития, 1997. |
35. | Фридман Л. М. Задачи на развитие мышления. М.: Просвещение, 1963. |
36. | Фридман Л. М. Психологический справочник учителю М.: 1991. |
37. | Чилингирова Л., Спиридонова Б. Играя, учимся математике. - М.,1993. |
38. | Шардаков В. С. Мышление школьников. М.: Просвещение, 1963. |
39. | Эрдниев П. М. Обучение математике в начальных классах. М.: АО "Столетие", 1995. |