Смекни!
smekni.com

Самостоятельная работа как средство обучения решению уравнений в 5-9 классах (стр. 11 из 16)

I. Организационное начало урока:

II. Сообщение темы и цели: - Сегодня на уроке продолжим решать системы уравнений, но будем учиться сами составлять по задаче систему.

III. Актуализация знаний учащихся: - Запишите число, тему.

1) выразить одну неизвестную через другую:

1. 3х-у=3

-у=3-3х

у=3х-3

2. у+2х=2

2х=2-у

2) решить систему методом подстановки:

- Повторим алгоритм. Решим:

Решим квадратное уравнение:

или

или

Ответ: (4; -14); (-1; 1)

IV. Закрепление

№ 498

-Прочтите задачу

-Как обозначим числа? (х, у)

-Если сумма? (х+у=18)

-Произведение чисел? (х*у=65)

-Найти что? (эти числа)

-Какую систему получим?

-Каким методом будем решать?

(записать пояснение: Пусть первое число – х и т. д.)

-К доске пойдет….

Решим квадратное уравнение:

Ответ: числа 5 и 13.

№504

-Прочтите условие.

-Какой формы участок? (Прямоугольной)

-Пусть длина – х, ширина – у.

-Площадь прямоугольника? (S=ав)

-Нужно перевести в одну единицу измерения: км. в м., га. в м2;

-Если участок прямоугольной формы, то какое уравнение составим?

(2(х+у)=1000)

-Площадь участка 60000 м2? (ху=60000)

-Запишем условие к задаче:

Пусть длина участка – х, ширина – у. Так как участок надо огородить забором длиной 1000м. Так как площадь участка 60000 м2, то составим уравнение: ху=60000. Получим систему:

Þ

Ответ: длина – 300м., ширина – 200м.

№ 1

-Послушайте условие:

«Одно из двух положительных чисел на 3 больше другого. Найдите эти числа, если их произведение равно 70?»

-Пусть числа х и у.

-Если известно, что одно больше на 3. Как запишем? (х=у+3)

-Произведение чисел? (ху=70)

-Составим систему:

Решим квадратное уравнение:

так как числа положительные, то 10 и 7.

Ответ: 10 и 7.

2) самостоятельная работа. (15 мин.)

-У вас на партах лежат сборники заданий и у каждого номер индивидуального задания.

-Запишите: «Самостоятельная работа»., стр… №….

1.

С. 15, в-1, № 3

С. 11, в-1, №4

2.

С. 20, в-1, № 5

С. 19, в-1, №4

3.

С. 28, в-1, № 6

С. 11, в-1, №4

4

С. 35, в-1, № 3

С. 19, в-1, №4

5.

С. 48, в-1, № 6

С. 19, в-1, №4

6

С. 21, в-1, № 6

С. 19, в-2, №4

7.

С. 15, в-2, № 3

С. 11, в-2, №4

8.

С. 20, в-2, № 5

С. 19, в-2, №4

9.

С. 28, в-2, № 6

С. 11, в-2, №4

10.

С. 35, в-2, № 3

С. 19, в-2, №4

11.

С. 48, в-2, № 6

С. 19, в-2, №4

12.

С. 21, в-2, № 6

С. 11, в-1, №4

13.

С. 29, в-1, № 4

С. 11, в-1, №4

14.

С. 29, в-2, № 4

С. 11, в-1, №4

15.

С. 30, в-2, № 6

С. 11, в-2, №4

16.

С. 31, в-2, № 6

С. 19, в-1, №4

17.

С. 30, в-1, № 6

С. 19, в-2, №4

18.

С. 31, в-1, № 6

С. 11, в-1, №4

-Оцениваться будут каждое задание отдельно.

Ответы

1. 1) (-5; 2); (2; -5) 10. 1) (5; -3); (-3; 5)
2. 1) (-2; 1); (1; -2) 11. 1) (1; -3); (3; -1)
3. 1) (5; -3); (-3; 5) 12. 1) (-7; 11); (3; 1)
4. 1) (8; 4); (4; 8) 13. 1) (7; 6); (-3; -4)
5. 1) (2; -4); (4; -2) 14. 1) (-7; -9); (3; 1)
6. 1) (-7; 9); (4; -2) 15. 1) (-3; 7); (2; 2)
7. 1) (-3; 4); (-4; 3) 16. 1) (2; 4); (4; 2)
8. 1) (2; 3); (3; 2) 17. 1) (-2; -3); (1; 0)
9. 1) (-2; 7); (7; -2) 18. 1) (6; -4); (-4; 6)

V. Подведение итогов:

-сколько существует способов решения систем уравнений?

-сдайте тетради.


3 К закрепляющим можно отнести самостоятельные работы, которые способствуют развитию логического мышления и требуют комбинированного применения различных правил и теорем. Они показывают, насколько прочно, осмысленно усвоен учебный материал. По результатам проверки заданий данного вида учитель определяет, нужно ли еще заниматься данной темой.

Тема: Графический способ решения уравнений.

Цель: добиться осознанного усвоения и запоминания графического

способа решения уравнений, сформировать практические умения и навыки;

Воспитывать аккуратность ;

Развивать наглядные представления;

Оборудование: табличка «абсцисса», таблица с графиками.

Ход урока.

I. Организационное начало.

а) Приветствие

б) Проверка готовности рабочих мест.

II. Сообщение темы и цели.

- Сегодня мы с вами научимся решать уравнения с помощью графиков.

III. Актуализация знаний учащихся.

1. Устный счет.

а) Что является графиком данной функции:

y=2х (линейная функция, график- прямая)

y=х2 (график – парабола, ветви направлены вверх)

y=3/x (гипербола , ветви расположены в I и III четверти)

y=х3(кубическая парабола, расположена в I и III четверти)

б) По чертежу определите общий вид уравнения, который задает эту функцию.

(I - кубическая парабола у=х3; II – парабола – у=х3; III – прямая, у=кх+в; IV гипербола у= k/x

в) Заполнить таблицу : у= 2х2-5

x -6 -2 0 1 2
y 67 3 -5 -3 3

IV Изучение нового материала

1. Объяснение материала.

- Откройте тетради. Запишите число, тему урока.

- Рассмотрим уравнение x2=6/x. Если обе части этого уравнения умножить на х, то получим уравнение х3=6, способ решения которого нам неизвестен. Однако с помощью графиков можно найти приближенные значения корней уравнения x2=6/x.

Построим в одно координатной плоскости графики функции у=х2 и у =6/x.

1. у=х2 - Д(у)= R. Графиком является парабола, ветви которой направлены вверх, т.к. к>0. Составим таблицу:

x -2 -1 0 1 2
y 4 1 0 1 4

2. y=6/x - Д(у) – любое , кроме 0. Графиком является гипербола, ветви которой находятся в I и III четвертях.