Смекни!
smekni.com

Абстрактно-дедуктивный метод введения и формирования математических понятий в 10-11 классах (стр. 2 из 4)

Остенсивные определения - определения значений слов путем непосредственного показа, демонстрации предметов. Часто применяются в начальной школе (понятия отрезка, окружности, угла и др.). Постепенно с развитием математического опыта и накоплением определенного числа понятий на смену остенсивным понятиям приходят вербальные понятия. Вербальные понятия – это понятия, когда значения неизвестных выражений определяются через выражения, значения которых известны.

Определение называется корректным, если выполняются два условия:

а) отсутствует порочный круг и связанная с ним возможность исключения нововведенных терминов (“Решение уравнения - это то число, которое является его решением”);

б) отсутствует омонимия: каждый термин встречается не более одного раза в качестве определяемого.

Доказательство теоремы состоит в том, чтобы показать, что если выполняется условие, то из него логически следует заключение, т. е., приняв, что P истинно, в соответствии с правилами вывода показать, что G истинно, и тем самым получить возможность утвердить, что данное высказывание (теорема) истинно в целом.

Доказательство включает в себя три основных элемента:

1. Тезис (главная цель доказательства - установить истинность тезиса). Форма выражения тезиса - суждение.

2. Аргументы (основания) доказательства - положения, на которые опирается доказательство и из которых при условии их истинности необходимо следует истинность доказываемого тезиса. Форма выражения аргументов - суждения. Связывая аргументы, приходим к умозаключению, которые строятся по определенным правилам. Аргументы, на которые можно опереться при доказательстве: аксиомы, определения, ранее доказанные теоремы.

3. Демонстрация - логический процесс взаимосвязи суждений, в результате которого осуществляется переход от аргументов к тезису.

Известно, что имея некоторую (прямую) теорему (P => G), можно образовать новые теоремы, и не одну:

G => P - обратная;

__

P => G - противоположная;

__

G => P - контрапозитивная (обратная противоположной или противоположнообратная).

Между этими четырьмя видами теорем существует тесная связь:

__

а) (P =>G) и (G => P) - одновременно истинны или ложны;

__

б) (G =>P) и (P => G) - одновременно истинны или ложны.

Изучая какую-либо теорему школьного курса математики, учитель должен придерживаться следующей последовательности:

1. Постановка вопроса (создание проблемной ситуации).

2. Обращение к опыту учащихся.

3. Высказывание предположения.

4. Поиск возможных путей решения.

5. Доказательство найденного факта.

6. Проведение доказательства в максимально простой форме.

7. Установление зависимости доказанной теоремы от ранее известных.

Процесс изучения школьниками теоремы включает следующие этапы: мотивация изучения теоремы; ознакомление с фактом, отраженным в теореме; формулировка теоремы и выяснение смысла каждого слова в формулировке теоремы; усвоение содержания теоремы; запоминание формулировки теоремы; ознакомление со способом доказательства; доказательство теоремы; применение теоремы; установление связей теоремы с ранее изученными теоремами.

При доказательстве математических утверждений используются разные абстрактно-дедуктивные математические методы.

Для того, чтобы учащиеся овладели прямым и косвенным доказательствами, необходимо сформировать у них определенную последовательность умений:

- умение искать доказательство,

- умение проводить доказательство,

- умение оформлять доказательство теоремы.

Функции и графики

Пусть даны две переменные х и у. Говорят, что переменная у является функцией от переменной х, если задана такая зависимость между этими переменными, которая позволяет для каждого, значения х однозначно определить значение у.

Примеры функций:

1. y = kx+b.

2. у= |х|.

3. у = х2.

4. у= 1/х, х>0

5. у = √х.

В каждом из этих примеров указана формула, позволяющая для каждого значения переменной х однозначно вычислить значение переменной у.

Для того чтобы задать функцию, нужно:

1) указать множество всех возможных значений переменной х. Это множество, которое мы будем обозначать D, называют областью определения функции;

2) указать правило, по которому каждому числу х из множества Dсопоставляется число у, определяемое числом х. Это число у называется значением функции в точке х. Переменную х называют аргументом.

Функция обычно обозначается одной буквой, например f. Значение функции fв точке х обозначается f (х).

Итак, если задана функция f, то задано множество чисел Dи каждому числу x

Dсопоставлено число y = f(x).

Пусть задана функция f. с областью определения D. Рассмотрим координатную плоскость. По оси абсцисс будем откладывать значение аргумента, а по оси ординат — значение функции. Для каждого числа x

Dможно вычислить y = f(x) и построить точку М (х; f (х)). Множество всех таких точек образует кривую, называемую графиком функции / в заданной системе координат.

Итак, графиком функции fназывается множество точек плоскости с координатами (х; f(х)), где х пробегает область определения функции f.

На рисунке 2 изображены графики функций, которые были приведены в качестве примера в начале параграфа.

Рассмотренные нами ранее простейшие зависимости определяют три важнейшие функции:

Эти функции являются стандартными примерами функций из трех классов, с которыми мы будем часто сталкиваться в дальнейшем: линейных, дробно-линейных и квадратичных.

Рис. 2

Для того чтобы определить переменную у как функцию от переменной х, нужно задать множество значений аргумента х и указать правило вычисления значений у в зависимости от х. Сначала обсудим, как задается правило вычисления значений. Во всех приведенных ранее примерах правило вычисления задавалось формулой, содержащей определенные операции.

Обучаясь математике, мы знакомились с различными действиями, операциями над числами. Например, используя только сложение и умножение, мы можем из числа х получить новые числа, скажем 3х, 3х + 5, х3 + 3х + 5 и т. д. Уже такого рода выражения, многочлены, могут служить для построения довольно богатого запаса функций.

Использование деления сильно расширяет этот запас, позволяет образовать выражения вида

и т. п. Функции, которые строятся как отношения многочленов, называют рациональными.

Операция деления отличается от сложения и умножения тем, что она не всегда определена — в знаменателе дроби нельзя ставить нуль. Поэтому, например, в выражение

можно подставить любые числа, кроме х=1 и х=-1, при которых знаменатель равен нулю.

Появление новых операций и введение специальных знаков для их обозначения приводят к дальнейшему обогащению наших возможностей — извлечение корня, переход к модулю числа и т. п.

Например, пусть f (х) равно числу —1, если х<0, равно нулю, если х = 0, и равно 1, если х>0. Этими словами мы описали некоторое правило вычисления, применимое к любому числу. Обозначим число f (х), найденное по этому правилу, через sgnх (от латинского слова signum, что означает «знак»). Теперь мы с помощью символа для обозначения новой операции можем строить новые формулы, например

Если функция задана формулой и не указано никаких ограничений, ее областью определения считается множество всех значений аргумента, при которых выполнимы все операции, участвующие в этой формуле. Это множество называют естественной областью определения данной функции.

Так, естественной областью определения функции

является множество чисел х, для которых
, т. е. промежуток [— 1; 1].

Еще раз обратим внимание на то, что две важные операции — деление и извлечение корня четной степени — выполнимы не всегда (нельзя разделить на нуль, нельзя извлечь корень четной степени из отрицательного числа). Это ограничение надо помнить и учитывать при нахождении области определения функции, в задании которой участвуют указанные операции.

Значения функции

вычисляются путем последовательного выполнения операций: возведение в квадрат, прибавление единицы, извлечение квадратного корня. Можно сказать, что функция
является «сложной функцией», составленной из более простых: и=х2, u = u+l, у=√u.

Итак, правила вычисления значений функции могут задаваться формулами, полученными с помощью известных нам ранее действий над числами.

Другой важный способ задания функции — табличный. В таблице можно непосредственно указать значения функции, однако лишь для конечного набора значений аргумента.

Вычисление значений функции может быть запрограммировано в калькуляторе. Вычислительное устройство может служить для вас способом задания новой функции. Современные вычислительные машины снабжены клавишами, позволяющими немедленно вычислить значения многих полезных функций.